- Генератор прямоугольных импульсов на NE555
- Применение таймера NE555. Часть 2 — генератор прямоугольных импульсов на NE555
- Пример №7 — Простой генератор прямоугольных импульсов на NE555
- Пример №8 — Генератор высокой частоты на NE555
- Пример №9 — Генератор низкой частоты на NE555
- Пример №10 — Регулируемый генератор прямоугольных импульсов на NE555
- Пример №11 — Одновибратор на NE555
- Пример №12 — Генератор, управляемый напряжением (ГУН) на NE555
- 555 генератор импульсов своими руками
- Разнообразие простых схем на NE555
- Размеры для разных типов корпусов
- Структурная схема NE555
- Электрические характеристики
- Эксплуатационные характеристики
- Металлодетектор на одной микросхеме
- Видео работы этого металлодетектора
- Преобразователь напряжения с 12В на 24В
- Анимация игрушек
- Генератор, управляемый светом
- Музыкальная клавиатура
- Таймер на 10 минут
- Имитатор сигнализации автомобиля
- Простой имитатор полицейской сирены
- Звуковой генератор уровня жидкости
Генератор прямоугольных импульсов на NE555
555 — аналоговая интегральная микросхема, универсальный таймер — устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искаженного в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи электроэнергии, устройства широтно-импульсного регулирования, таймеры и др.
В данной статье расскажу о построении генератора на этой микросхеме. Как написано выше мы уже знаем что микросхема формирует повторяющиеся импульсы со стабильными временными характеристиками, нам это и нужно.
Схема включения в астабильном режиме. На рисунке ниже это показано.
Так как у нас генератор импульсов, то мы должны знать их примерную частоту. Которую мы рассчитываем по формуле.
Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. t = t1+t2.
Частота и период — понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C;
t2 = 0.693R2C;
С теорией закончили так что приступим к практике.
Разработал простенькую схему с доступными всем деталями.
Расскажу о ее особенностях. Как уже многие поняли, переключатель S2 используется для переключения рабочей частоты. Транзистор КТ805 используется для усиления сигнала (установить на небольшой радиатор). Резистор R4 служит для регулировки тока выходного сигнала. Сама микросхема служит генератором. Скважность и частоту рабочих импульсов изменяем резисторами R3 и R2. Диод служит для увеличения скважности(можно вообще исключить). Также присутствует шунт и индикатор работы, для него используется светодиод со встроенным ограничителем тока(можно использовать обычный светодиод ограничив ток резистором в 1 кОм). Собственно это все, далее покажу как выглядит рабочее устройство.
Вид сверху, видны переключатели рабочей частоты.
Снизу прикрепил памятку.
Данными подстроечными резисторами регулируется скважность и частота (на памятке видно их обозначение).
Источник
Применение таймера NE555. Часть 2 — генератор прямоугольных импульсов на NE555
Пример №7 — Простой генератор прямоугольных импульсов на NE555
В момент включения схемы, конденсатор C1 разряжен и на выходе 3 таймера NE555 находится высокий уровень. Затем конденсатор C1 через резистор R1 начинает постепенно заряжаться.
В момент, когда потенциал на конденсаторе, и соответственно на выводе 6 (стоп) таймера, достигнет примерно 2/3 напряжения питания, сигнал на выводе 3 переключится на низкий уровень. Теперь конденсатор через сопротивление R1 начинает разряжаться. Когда уровень напряжения на входе 2 (запуск) упадет до 1/3 Uпит., на выходе снова будет высокий уровень. И процесс повторится снова.
Если к выходу добавить еще RC-цепь (выделено красным цветом), то выходной сигнал по форме будет приближен к синусоиде.
Пример №8 — Генератор высокой частоты на NE555
Для таймера NE555 – частота в 360кГц является максимальной, поскольку при увеличении ее, работа схемы становится нестабильной.
Пример №9 — Генератор низкой частоты на NE555
Генератор низкой частоты по сути своей являются таймером времени. Увеличивая емкость электролитического конденсатора можно растянуть временной интервал. При интервале более 30 минут, показания схемы будут неточными.
Пример №10 — Регулируемый генератор прямоугольных импульсов на NE555
Данная схема позволяет устанавливать на выходе таймера необходимую частоту генератора в пределах от 1 Гц до 100 кГц.
Пример №11 — Одновибратор на NE555
При подаче питания на схему одновибратора, на выводе 3 таймера NE555 будет низкий уровень. Запуск одновибратора происходит в момент подачи отрицательного импульса на вход 2 (запуск), при этом на его выходе будет высокий уровень в течение времени определяемое значениями R1 и C1.
Следует иметь в виду, что запускающий импульс должен быть короче выходного. Если же входной сигнал будет дольше, то пока на входе низкий уровень на выходе все время будет высокий. Подробнее о работе одновибратора на 555 таймере читайте здесь.
Пример №12 — Генератор, управляемый напряжением (ГУН) на NE555
Данный генератор иногда называют преобразователь частоты напряжением, так как частота может быть изменена путем изменения входного напряжения.
Как известно вывод 5 таймера 555 предназначен для управления длительностью импульсов на выходе путем подачи на него напряжения, которое должно составлять 2/3 от Uпит. При увеличении управляющего напряжения, увеличивается время заряда/разряда конденсатора и как следствие уменьшается частота на выходе генератора.
Источник: «Применение микросхемы 555», Колин М.
Источник
555 генератор импульсов своими руками
Генератор высокого напряжения на NE555
Автор: Sobiratel_sxem, sobiratel_sxem@mail.ru
Опубликовано 03.12.2013
Создано при помощи КотоРед.
На просторах интернета очень много схем посвящено данной тематике и подобным конструкциям. Как правило они не лишены одного своего серьёзного недостатка: все они не имеют системы защиты от обратного напряжения. В большинстве случаев это приводит к печальным последствиям: выгоранию выходных транзисторов и пробою таймера NE555.
Испытывая одну из подобных конструкций я сам спалил пару микросхем NE555 и несколько выходных ключей. Тогда и возникла идея доработки данной схемы и добавления простейшей, но надежной защиты. После проведённой доработки больше при работе не возникало никаких проблем и не сгорело ни одного элемента. Итак, рассмотрим работу устройства подробнее.
Основу данной схемы составляет генератор прямоугольных импульсов на интегральном таймере NE555 (отечественный аналог КР1006ВИ1). Частота генератора задаётся цепочкой R1-R2-C1. При данных номиналах частота генератора составляет приблизительно 30 килогерц. С выхода генератора через токоограничительный резистор R3 выходной сигнал поступает на вход составного транзистора Т1-Т2. В коллектор транзистора Т2 включена первичная обмотка повышающего выходного трансформатора. Диод VD1 служит для защиты устройства от броска обратного напряжения при закрытии транзистора. Супрессорный диод VD2 защищает транзистор Т2 от пробоя и выбирается по максимальному напряжению коллектор-эмиттер Т2. Супрессорный диод VD3 защищает микросхему DD1 от пробоя. Так как максимальное напряжение питания микросхемы составляет 15 вольт, супрессорный диод следует выбрать на напряжение открывания не более этого значения (или немного превышающим). При работе на вторичной обмотке трансформатора напряжение приблизительно 5-6 киловольт. Это напряжение поступает на вход умножителя УН-9/27. С выхода данного умножителя и снимается высокое напряжение.
Таким образом доработка схемы заключается в установке диода VD1 и супрессорных диодов VD2 и VD3. Несмотря на всю простоту защиты, она дала отличные результаты и надёжную защиту схемы от бросков обратного напряжения.
Следует отметить интересный факт, что генератор собранный по данной схеме имеет так называемый электронный ветер — поток отрицательно заряженных электронов у высоковольтного провода. Его можно обнаружить по холодку при приближении руки к высоковольтному проводу. Поэтому данная схема и используется очень часто при построении ионизаторов воздуха. Кроме того замечен ещё один интересный факт: высокое напряжение с данной установки способно растекаться по поверхности диэлектрических материалов (стеклу, дереву, бумаге, фарфору, пластмассе. ), электризует вокруг себя лежащую бумагу (до того что при проведении рукой по газете, лежащей рядом с установкой по ней пробегают искры). Ни с одной другой схемой (без умножителя, то есть с переменным напряжением на выходе) таких эффектов не было обнаружено.
Внимание. Не проводите подобные опыты не имея достаточного опыта. Соблюдайте строго технику безопасности! Запомните: Электрический ток — это хороший слуга, но плохой хозяин.
Применяемые детали:
DD1 — NE555 (КР1006ВИ1)
Т2 — КТ8101А (С радиатором)
Трансформатор Tr1 — это переделанный строчный трансформатор от старого лампового телевизора. Для его переделки снимаем первичную обмотку и мотаем свою. Первичная обмотка содержит 8 витков провода ПЭЛ-1.5. Вторичная обмотка (высоковольтная, залитая пластмассой) остается штатной, после чего трансформатор собирается. При сборке следует между половинок сердечника следует сделать зазор около 1 мм из тонкого гетинакса или стеклотекстолита.
Источник
Разнообразие простых схем на NE555
Микросхема NE555 (аналог КР1006ВИ1) — универсальный таймер, предназначена для генерации одиночных и повторяющихся импульсов со стабильными временными характеристиками. Она не дорогая и широко используется в различных радиолюбительских схемах. На ней можно собрать различные генераторы, модуляторы, преобразователи, реле времени, пороговых устройств и прочих узлов электронной аппаратуры…
Размеры для разных типов корпусов
КОРПУС — РАЗМЕРЫ
PDIP (8) — 9.81 мм × 6.35 мм
SOP — (8) — 6.20 мм× 5.30 мм
TSSOP (8) — 3.00 мм× 4.40 мм
SOIC (8) — 4.90 мм× 3.91 мм
Структурная схема NE555
Электрические характеристики
ПАРАМЕТР | УСЛОВИЯ ИСПЫТАНИЙ | SE555 | NA555 NE555 SA555 | ЕД. ИЗМ. | |||||
---|---|---|---|---|---|---|---|---|---|
MIN | TYP | MAX | MIN | TYP | MAX | ||||
Уровень напряжения на выводе THRES | VCC = 15 В | 9.4 | 10 | 10.6 | 8.8 | 10 | 11.2 | В | |
VCC = 5 В | 2.7 | 3.3 | 4 | 2.4 | 3.3 | 4.2 | |||
Ток (1) через вывод THRES | 30 | 250 | 30 | 250 | нA | ||||
Уровень напряжения на выводеTRIG | VCC = 15 В | 4.8 | 5 | 5.2 | 4.5 | 5 | 5.6 | В | |
TA = от –55°C до 125°C | 3 | 6 | |||||||
VCC = 5 В | 1.45 | 1.67 | 1.9 | 1.1 | 1.67 | 2.2 | |||
TA = от –55°C до 125°C | 1.9 | ||||||||
Ток через вывод TRIG | при 0 В на TRIG | 0.5 | 0.9 | 0.5 | 2 | мкA | |||
Уровень напряжения на выводе RESET | 0.3 | 0.7 | 1 | 0.3 | 0.7 | 1 | В | ||
TA = от –55°C до 125°C | 1.1 | ||||||||
Ток через вывод RESET | при VCC на RESET | 0.1 | 0.4 | 0.1 | 0.4 | мA | |||
при 0 В на RESET | –0.4 | –1 | –0.4 | –1.5 | |||||
Переключающий ток на DISCH в закрытом состоянии | 20 | 100 | 20 | 100 | нA | ||||
Переключающее напряжение на DISCH в открытом состоянии | VCC = 5 В, IO = 8 мA | 0.15 | 0.4 | В | |||||
Напряжение на CONT | VCC = 15 В | 9.6 | 10 | 10.4 | 9 | 10 | 11 | В | |
TA = от –55°C до 125°C | 9.6 | 10.4 | |||||||
VCC = 5 В | 2.9 | 3.3 | 3.8 | 2.6 | 3.3 | 4 | |||
TA = от –55°C до 125°C | 2.9 | 3.8 | |||||||
Низкий уровень напряжения на выходе | VCC = 15 В, IOL = 10 мA | 0.1 | 0.15 | 0.1 | 0.25 | В | |||
TA = от –55°C до 125°C | 0.2 | ||||||||
VCC = 15 В, IOL = 50 мА | 0.4 | 0.5 | 0.4 | 0.75 | |||||
TA = от –55°C до 125°C | 1 | ||||||||
VCC = 15 В, IOL = 100 мА | 2 | 2.2 | 2 | 2.5 | |||||
TA = от –55°C до 125°C | 2.7 | ||||||||
VCC = 15 В, IOL = 200 мA | 2.5 | 2.5 | |||||||
VCC = 5 В, IOL = 3.5 мA | TA = от –55°C до 125°C | 0.35 | |||||||
VCC = 5 В, IOL = 5 мA | 0.1 | 0.2 | 0.1 | 0.35 | |||||
TA = от –55°C до 125°C | 0.8 | ||||||||
VCC = 5 В, IOL = 8 мA | 0.15 | 0.25 | 0.15 | 0.4 | |||||
Высокий уровень напряжения на выходе | VCC = 15 В, IOH = –100 мA | 13 | 13.3 | 12.75 | 13.3 | В | |||
TA = от –55°C до 125°C | 12 | ||||||||
VCC = 15 В, IOH = –200 мA | 12.5 | 12.5 | |||||||
VCC = 5 В, IOH = –100 мA | 3 | 3.3 | 2.75 | 3.3 | |||||
TA = от –55°C до 125°C | 2 | ||||||||
Потребляемый ток | Низкий уровень на выходе, без нагрузки | VCC = 15 В | 10 | 12 | 10 | 15 | мA | ||
VCC = 5 В | 3 | 5 | 3 | 6 | |||||
Низкий уровень на выходе, без нагрузки | VCC = 15 В | 9 | 10 | 9 | 13 | ||||
VCC = 5 В | 2 | 4 | 2 | 5 |
(1) Этот параметр влияет на максимальные значения времязадающих резисторов RA и RB в цепи Рис. 12. Для примера, когда VCC = 5 V R = RA + RB ≉ 3.4 МОм, и для VCC = 15 В максимальное значение равно 10 мОм.
Эксплуатационные характеристики
ПАРАМЕТР | УСЛОВИЯ ИСПЫТАНИЙ (2) | SE555 | NA555 NE555 SA555 | ЕД. ИЗМ. | |||||
---|---|---|---|---|---|---|---|---|---|
МИН. | ТИП. | МАКС. | МИН. | ТИП. | МАКС. | ||||
Начальная погрешность |
интервалов времени (3)
°C
TA = 25°C
TA = 25°C
(1) Соответствуют стандарту MIL-PRF-38535, эти параметры не проходили производственные испытания.
(2) Для условий указанных как Мин. и Макс. , используют соответствующее значение, указанное в рекомендуемых условиях эксплуатации.
(3) Погрешность интервала времени определяется как разность между измеренным значением и средним значением случайной выборки из каждого процесса .
(4) Значения указаны для моностабильной схемы со следующими значениями компонентов RA = 2 от кОм до 100 кОм, C = 0.1 мкФ.
(5) Значения указаны для астабильной схемы со следующими значениями компонентов RA = 1 от кОм до 100 кОм, C = 0.1 мкФ.
Металлодетектор на одной микросхеме
Диаметр катушки 70-90 мм, 250-290 витков провода в лаковой изоляции (ПЭЛ, ПЭВ…), диаметром 0,2-0,4 мм.
Вместо динамика можно использовать наушники или пьезоизлучатель.
Схема простая и предназначена рекомендована начинающим радиолюбителям. Так как схема данного металлодектора простая, поэтому и расстояние обнаружения металла тоже будет небольшое.
Видео работы этого металлодетектора
Преобразователь напряжения с 12В на 24В
Анимация игрушек
Совместно со счётчиком 4017 и 555 можно сделать «бегущий огонь» для анимации какой нибудь игрушки или сувенира. При включении питания начинает работать генератор на 555 всего несколько минут, затем выключается. При этом ток потребления падает — батареек хватит на долго. Время выставляется переменным резистором 500 кОм.
Генератор, управляемый светом
Темно- детектор с LM555 . Эта схема будет генерировать звук когда свет падает на фотодатчик Cds .
Эта схема генерирует сигнал тревоги, когда на ЛДР датчик попадает свет солнца, огня или лампы . А на 555 собран мультивибратор частотой генерации около 1 кГц при обнаружении света . Датчика при воздействии света замыкает цепь и 555 генерирует колебания около 1 кГц через открытый транзистор BC158 .
Музыкальная клавиатура
Очень простой музыкальный инструмент (клавиатуру) для воспроизведения музыки можно сделать с помощью чипа 555. Можно собрать необычный музыкальный инструмент на фото выше. В качестве клавиатуры используется графит и лист бумаги с нотами представлены как дырки в бумаге.
Такая же схема, но с обычными резисторами и кнопками.
Таймер на 10 минут
Запускается таймер кнопкой S1 после 10 мин. попеременно мигают светодиоды LED1 и LED2. Время задаётся резистором 550 кОм и конденсатором 150 мкф.
Имитатор сигнализации автомобиля
Светодиод мигает, как будто в автомобиле установлена сигнализация. Светодиод установить на видном месте. Воришка увидит, что машина под сигнализацией и обойдёт её стороной 🙂
Простой имитатор полицейской сирены
Схема собрана на макетной плате.
На двух NE555 можно сделать простой генератор полицейской сирены. Рекомендуются Вам сделать следующее параметры таймера R1=68 кОм (timer №1) настроен в режим медленной генерации и таймер с R4=10 кОм (timer №2) настроен в режиме быстрой генерации. М ожете изменять характеристики время таймера. Выходная частота изменяется посредством цепи резисторов R1, R2 и C1 для компонент timer №1 и R4, R5 и С3 для timer №2.
Похожая схема ниже с транзистором на выходе :
Звуковой генератор уровня жидкости
Вы можете использовать эту схему контроля уровня воды для сигнализации в любом месте как индикатор уровня воды, например в резервуарах , баках, бассейнах или в любом другом месте .
Это далеко не все возможности микросхемы-таймера. Посмотрите также видео работы микросхемы.
Источник