Адаптивное освещение своими руками

Как работают адаптивные фары

Часто бывают ситуации, когда приходится ездить по извилистой трассе в ночное время. Приближаясь к повороту, каждый водитель снижает скорость, ведь никогда неизвестно, что за ним. Увы, заставить свет изогнуться невозможно, но его можно направить, в чём помогут адаптивные фары.

Статистика в подтверждение

Автомобильное освещение способно не только обеспечить комфортную поездку в ночное время, но и может спасти жизнь. Преждевременно заметив преграду или живое существо, водитель может вовремя остановиться. Но это не всегда помогает, ведь стандартные фары несовершенные и порядком устарели. Так, половина всех ДТП случается именно ночью, даже если есть ночное освещение. Это стало причиной, чтобы разработать адаптивный свет фар.

Поскольку обычное освещение машины направлено вперёд на дорогу, при поворотах оно неспособно осветить дальнейший участок. Это не касается адаптивных фар, которые изменяют свой угол освещения в соответствии с поворотом руля. К тому же это исключает появление слепящего эффекта для других водителей, что также является частой причиной аварий.

Принцип работы

Такие современные фары оборудуются специальными сенсорами, которые следят за поворотом руля и скоростью движения автомобиля. При изменении этого показателя подаётся электронный сигнал в специальные датчики, которые и поворачивают элементы освещения. Стандартный угол рассеивания для каждого фонаря составляет 15 градусов, что для двух фар будет 30 градусов.

В основном система адаптивного освещения использует для своей работы регуляторы для приёма сигналов. В них встроен датчик выравнивания, который поднимает свет фар, когда автомобиль выезжает на возвышение. Встречаются системы AFS, которые сегодня наиболее распространены, и AFL — более сложные и функциональные модели.

Среди будущих планов разработчиков числится использование специальных датчиков приближения, которые не только осветят объект впереди, но и проинформируют водителя, какую силу нужно приложить для тормоза.

Такие решения в освещении ещё не являются полностью самостоятельным решением. Они лишь начинают внедряться. Благодаря своим преимуществам эти фары уже берут участие в большинстве тестов безопасности водителя, поэтому вскоре будут активно использоваться во всех новых моделях автопрома.

Особенности системы

Работают адаптивные светодиодные фары под управлением бортового компьютера. Он собирает в себя информацию с датчиков и создаёт сигналы в моторике ламп освещения. Сюда даже включаются функции стеклоочистителей, которые опускают фонари при начале работы. Важной особенностью таких устройств является возможность поворота как горизонтально, так и вертикально.

Система адаптивных фар следит за безопасностью движения, поэтому устройства освещения опускаются вниз, когда впереди едет встречный автомобиль. Для этого датчики улавливают мощность встречного света. Аналогично фары реагируют на туман, рассеиваясь на расстоянии метра.

Для блок-фар используются специальные биксеноновые адаптивные фары. Они обладают малым мотором с небольшой дискретностью, который двигает источники света во все стороны. В зависимости от поворота фонари изменяют свою мощность и направление. Так, если двигаться влево, левая фара повернётся на полный угол, а правая — лишь наполовину. Это делается для достижения большей безопасности.

Решение своими силами

К сожалению, сегодня только небольшое количество машин оборудовано технологией адаптивного освещения. Чтобы оборудовать свой автомобиль адаптивными источниками света, не понадобится много усилий. Конечно, оригинального результата добиться не удастся, ведь он создаётся только при помощи современных технологий и бортового компьютера. Если в машине находятся стандартные источники питания, им можно добавить возможности поворотного механизма, а также отрегулировать уровень наклона.

Читайте также:  Вытравка плат своими руками

В первую очередь важно подумать о проводке. Элементы датчиков должны подходить к фарам. Если где-то возникает ошибка, модель изделия необходимо заменить. На практике понадобится два датчика, которые будут установлены на передние колёса. Чтобы можно было управлять адаптивом, используется специальный модуль LCM.

Берёмся за установку

Чтобы установить такой свет своими руками, потребуется открыть передний капот. Для этого его следует снять, но, не задевая кабеля противотуманных фар и подачи жидкости в омыватель. После этого отсоединяются сами фары. Как правило, они крепятся на 3 болта. После этого необходимо провести проводку от нового комплекта фонарей в салон. Среди переходников будут провода на массу, которые необходимо поставить в лонжеронах под фары.

Для удобства все провода, проведённые в салон, лучше обмотать изолентой. Также кабеля от левой фары лучшего всего установить под аккумулятором, а от правой — за омывателем. После этого собираются фары, подсоединяется к ним блок для розжига и адаптивного света. После того как будут подсоединены разъёмы, можно подключать аккумулятор в работу. Дальше нужно получить доступ к блоку предохранителей. В чёрный разъём ставится провод лампы, что даст подачу энергию приборам освещения и запустит их работу.

Поскольку к элементам движения автомобиля подключены датчики, они смогут передавать сигнал на адаптивные фары. Такая система работает не на всех машинах, но аналогичного эффекта можно добиться своими силами. Также большинство современных функций не удастся внедрить в транспортное средство самостоятельно, поскольку они требуют работы бортового компьютера.

Сегодня адаптивные ксеноновые фары AFLS стали новым трендом. Водителей привлекает их функционал и удобство, ведь они способны сделать поездку во многом комфортней. Чтобы обзавестись этими устройствами, можно приобрести фары в специализированных магазинах и заняться их установкой собственными силами. Это даст максимально приближенный к оригиналу функционал освещения.

Чтобы позволить себе современные адаптивные фары, способные изменять угол освещения, лучше обратиться в специализированную компанию, которая подберёт такие устройства под модель машины. Сделать это самому реально, но важно учитывать совместимость всех элементов и обладать достаточными навыками.

Источник

Адаптивная система освещения для автомобилей

При вождении автомобиля в темное время суток возникает необходимость хорошего освещения дороги на достаточно длинную дистанцию. Но если по встречной полосе едет автомобиль с включенными фарами, то он ослепляет водителя встречного направления.

Этот эффект ослепления является одной из главных проблем езды в темное время. Для того чтобы избежать ослепления лампочки фар имеют две нити накала, причем вторая расположена так, чтобы свет распространялся вниз и в сторону от уровня глаз водителя встречного автомобиля. На практике, обычно водитель вручную переключает дальний и ближний свет механическим переключателем. Однако это очень неудобно для водителя, особенно в часы пик.

Наш проект “Адаптивная система освещения для автомобилей”(АСО) это умное решение для безопасного и удобного ночного вождения без интенсивного ослепляющего эффекта.

Адаптивная система не требует ручного переключения “ближний/дальний” при приближении встречного автомобиля. Система сама определяет есть ли свет от встречного автомобиля и переключает на ближний свет, а затем, после прохождения мимо, снова на дальний. Пользователь может настроить чувствительность системы.

Читайте также:  Идеи для оформления класса своими руками

Отличительные особенности системы

  • Питание от 12 В аккумуляторной батареи автомобиля, с пренебрежительно малым потреблением в ждущем режиме.
  • Надежный и защищенный от атмосферных явлений модуль оптического датчика (фотоэлемент CDS).
  • Независимый регулируемый контроль, для установки параметра“чувствительность определения света”, чтобы избежать ложных срабатываний, вызванных влиянием других источников света, таких как уличные фонари.
  • Дополнительный селекторный выключатель для “ режима автоматической сигнализации”(ASM). В этом режиме фары переходят в пульсирующий режим, т.е. ритмично переключают ближний свет на дальний и наоборот (аналогично тому как водители сигналят светом друг другу).
  • “Режим энергосбережения”- Если схема находится в активном режиме, по умолчанию, фары автоматически выключаются при въезде на хорошо освещенную территорию.

Эффект Трокслера

Исследования д-ра Алана Льюиса, который работает в колледже оптометрии при государственном университете в Биг Рапидс, штат Мичиган, обнаружил, что во время ночного вождения, свет от фар транспортных средств, может стать причиной ослепления.

Даже после окончания воздействия яркого света на сетчатке глаза остается его изображение, что создает слепое пятно. Это явление, известное как эффекта Трокслера, увеличивает время реакции водителя до 1,4 секунды.

Это означает, что, при скорости 60 миль в час (примерно 96.5км/час ), водитель проедет 123 фута (37.5 м), прежде чем среагирует на опасность. В обычной ситуации время реакции на изменения в условиях вождения равно 0,5 сек, а расстояние, пройденное до торможения, составляет 41 фут (12.5 м), при той же скорости движения!

Схема электрических соединений до переделки

Схема электрических соединений при подключении АСО

Принципиальная электрическая схема

Перечень компонентов

  • Микросхема: NE555 – 1
  • 8-ми контактная панелька для МС – 1
  • Транзистор: BC547 – 1
  • Диод: 1N4007 – 2
  • Резисторы: 100кОм подстроечный – 1; 47кОм 0.25 Вт – 1; 22кОм 0.25 Вт – 1; 10кОм 0.25Вт– 1; 1кОм 0.25 Вт – 2
  • Конденсаторы: 10мкФ/25В – 1; 100мкФ/25В – 1
  • Светодиоды: 5мм красный и зеленый – 2
  • LDR: фотоэлемент 20мм капсульного типа – 1
  • Реле: 12В постоянного тока – 1
  • Выключатель: переключатель со средней точкой (SPST)– 2

Работа схемы

Схема построена на популярной микросхеме NE555 (IC1). Здесь IC1 включена по схеме автоколебательного мультивибратора запускаемого по триггерному входу (вывод2). Мультивибратор работает на частоте примерно 1.5 Гц (рабочий цикл 75%), которая определяется величиной компонентов R1,R 3и C1. Схема питается от 12В аккумулятора автомобиля.

  • В положении ВКЛ. переключателя S1 напряжение 12В поступает на схему через диод защиты от переполюсовки 1N4007 (D1). Конденсатор C3 (100мкФ/25В) буферный, для повышения стабильности схемы. При отсутствии света, датчик освещенности, состоящий из фотоэлемента (LDR), подстроечного резистора (Р1) и транзистора (Т1) запрещает работу мультивибратора (вывод 4 “сброс” ). При этом на выходе IC1 (вывод3) “низкий” уровень сигнала и 12В реле (RL1) не срабатывает. Это состояние идицируется первым светодиодом (LED1). Поскольку нить накала дальнего света фар подключена к “+” через нормально замкнутые контакты реле, то в этом режиме они включены на дальний свет.
  • Когда на датчик освещенности попадает яркий свет, мультивибратор запускается и “высокий” уровень сигнала втягивает реле. Контакты реле переключают фары на ближний свет, до тех пор пока не изменится состояние датчика освещенности. Это состояние идицируется вторым светодиодом (LED2). Переключателем S2 задается режим автоматической сигнализации (ASM). В положении ВКЛ выводы 2 и 6 IC1 соединяются с “землей” и, следовательно, автоколебательный режим мультивибратора отключен. При S2 в положении ВЫКЛ функция ASM включается и начинается быстрое переключение ближний/дальний, пока на датчик освещенности попадает яркий свет от встречного автомобиля.
  • Контакты реле RL1 можно соединить параллельно штатным контактам селекторного переключателя ближний/дальний. Также возможна подача +12В на нити накала ближнего и дальнего света через контакты реле.
  • Рекомендуется использовать один 20мм датчик, закрепленный в соответствующей позиции в передней части автомобиля.
Читайте также:  Изготовление композитных бассейнов своими руками

Источник

Адаптивное освещение для ПК


В смартфонах присутствует такая умная функция, как адаптивное освещение. Такая функция присутствует и в некоторых моделях телевизоров. Но, по каким- то причинам, на компьютерах нет системы автоматической регулировки яркости. Чтобы изменить яркость, каждый раз приходится нажимать клавиши. А на некоторых компьютерах нужно нажимать комбинацию клавиш.

Это несколько неудобно и отвлекает от работы.
Мастер разработал простое устройство, которое можно подключить к любому компьютеру, и его яркость будет регулироваться автоматически, как и в смартфонах.








Шаг второй: тестирование схемы
Для проверки работоспособности устройства мастер собрал схему на макетной плате. В качестве программного обеспечения написал простую программу для вывода данных датчика (данных интенсивности света) на последовательный монитор Arduino.

В идеале данные должны варьироваться от 0 до 1024 (теоретически). Но на практике ни один LDR не идеален (даже в одной партии). В итоге мастер я получил данные от 0 до 950.

В любом случае это работает, а небольшая погрешность не имеет значения.





Шаг пятый: код
Дальше нужно запрограммировать плату.
Прежде всего он определил контакт Arduino, на который датчик вводит данные.

В функции настройки установил последовательную связь со скоростью 9600. Функция настройки запускается только один раз при каждом включении платы Arduino.

Затем, в основном цикле, Ардуино получает данные и отправляет их по последовательному каналу. Небольшая задержка в 200 мс, нужна для плавной работы.

Полностью код для Ардуино можно загрузить ниже.

Теперь нужно подготовить ПО Python.
Как уже говорилось ранее, датчик отправляет данные в Arduino, а python делает все остальное. Мастер написал простой скрипт на Python.
В любом случае, если у вас не установлен , установите Последнюю версию Python можно загрузить здесь. При установке нужно убедится, что установлен флажок ‘add python to environment variable path’.
Так же нужно установить две библиотеки, Pyserial и screen- bright -control, используя команды ниже (знаки $ должны обозначать их как команду терминала, копировать без них)

Теперь разберем части кода на случай если кто то захочет его отредактировать.
В этой части импортируются библиотеки ‘serial.tools.list_ports’ необходим для автоматического обнаружения платы Arduino.

Устанавливает скорость и номер порта. Для данной платы скорость составляет 9600

Этот раздел автоматически определяет порты USB и пытается подключиться к Arduino.

Следующая функция преобразует данные Arduino (от 0 до 1024) в% данных — от 0 до 100. Это называется сопоставлением.

Остальная часть кода просто следит за тем, чтобы яркость оставалась на уровне заданной интенсивности света.

Полный код можно скачать ниже.

Теперь осталось подключить плату с помощью кабеля к компьютеру и разместить ее в удобном месте. Мастер приклеил ее к крышке ноутбука с обратной стороны.

Весь процесс по изготовлению такой платы, ее программированию и тестированию можно посмотреть на видео.

Источник

Оцените статью