Аккумулятор тестер своими руками

ТЕСТЕР АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ 12В

Самодельный тестер автомобильных аккумуляторов, позволяющий быстро и достоверно оценить состояние 12 В батарей, сделан на основе китайского модуля ZB2L3. Это анализатор скорости разряда при определённой нагрузке работающий с АКБ 1.2-12 В, в том числе стандартных литиевых, типа 18650. Его цена на торговых площадках примерно 300 рублей.

Характеристики модуля ZB2L3

  • Рабочий ток: 70 мА
  • Напряжение питания: 4.5-6 В (разъем USB)
  • разрядное напряжение: 1-15 В, шаг 0.01 В
  • Диапазон напряжения отключения: 0.5-11 В
  • Разрядный ток: максимальный 3 А, разрешение 0.001 А
  • Максимальная погрешность измерения напряжения: 1%
  • Максимальная погрешность измерения тока: 1.5%
  • Максимальная емкость батареи: 9999 А/ч (отображение путем сдвига десятичной точки)

Резистор 7,5 Ом на 5 Вт, входящий в комплект к тестеру, не сможет проверить автомобильный АКБ 12 В. Полностью заряженный аккумулятор будет при испытании давать ток около 1.7 А, так что мощность этого резистора должна быть не менее 20 Вт.

Схема доработки модуля

Тест батареи 72 A/ч продолжался двое суток, поэтому решено было увеличить ток разряда выше паспортного. Максимальный заявленный ток разряда через этот модуль 3 A, но на плате есть измерительный резистор 0R05 в SMD виде, поэтому можно просто подключить реле и присоединить второй резистор большой мощности. При желаемом токе разряда 5 А — мощность этого резистора минимум 60 Вт, так что проблему трудности охлаждения его решила обычная галогеновая лампа H7. С ней ток разряда 4 А и время теста АКБ 72 А/ч сократилось до 18 часов, а для батареи 44 А/ч менее 10, что является приемлемым значением.

Для правильной работы тестера требуется питание 5 В. Предусмотрено питание от Повер Банка через разъем micro-USB. В данном исполнении решено было добавить модуль зарядки/защиты на TP4056 и модуль повышающего преобразователя на MT3608. Холодная нить накала лампы имеет малое сопротивление, поэтому контакты реле должны выдерживать минимум 20 ампер. Элементы тестера автоаккумуляторов спрятаны в куске пластикового кабель-канала.

Описание тестирования емкости батареи

Перед началом испытаний аккумулятор заряжается полностью, после чего нужно подождать 2 часа.

  1. Подключить исследуемый аккумулятор.
  2. Включить питание измерителя. На дисплее отобразится текущее напряжение аккумулятора.
  3. Нажать кнопку + или — Тестер сам определяет тип батареи и по умолчанию выбирает и отображает конечные напряжения разряда, например, 3,0 В для Li-Po и 9 В для свинцовых. Кнопками +/- вручную изменить напряжение до 10.5 В так как не каждый аккумулятор без ущерба выдержит разряд до 9 вольт.
  4. Установленное напряжение разряда подтвердить кнопкой ОК.
  5. После контроля начнется тестирование, что будет видно по лампочке. При этом на дисплее последовательно появляться будут: текущее напряжение батареи, текущий ток разряда (через резистор 47 Ом) и определяемая емкость.
  6. Тест длится несколько часов, конец теста показывается миганием дисплея. Лампа выключается автоматически, после завершения разряда.
  7. Считываем и записываем показания. Причём в целях экономии энергии, результат держится несколько минут, потом дисплей гаснет и тестер переходит в спящий режим.

Заметьте, что тестер покажет только емкость рассчитанную через резистор 47 Ом, и мы должны добавить к этому значение с лампой. Лампа H7 имеет сопротивление горячей нити примерно 3 Ома. Аккумулятор разряжается параллельно через резистор и лампу накаливания. Примерно это будет 2,8 Ома, поэтому полученный результат следует умножить на 14,2. Расчеты очень просты, так что каждый сам узнать точное итоговое значение.

Читайте также:  Аист своими руками для детского сада

Было проведено и тестирование литиевых элементов 18650, разряжая их током около 0.4 А, с этим тоже не возникло никаких проблем. В общем прежде чем покупать или эксплуатировать долго стоявший аккумулятор, советуем проверить их этим несложным устройством.

Источник

Простой тестер ёмкости аккумуляторов на Arduino

В последнее время я начал замечать, что мой смартфон стал разряжаться быстрее. Поиски программного «пожирателя» энергии плодов не принесли, поэтому стал задумываться, не пришло ли время заменить АКБ. Но абсолютной уверенности в том, что причина в батарее не было. Поэтому прежде чем заказывать новый аккумулятор решил попробовать измерить реальную емкость старого. Для этого было решено собрать простой измеритель емкости АКБ, тем более что идея эта вынашивалась уже давно – уж очень много батареек и аккумуляторов окружает нас в повседневной жизни, и было бы неплохо иметь возможность время от времени тестировать их.

Сама идея, лежащая в основе работы устройства, крайне проста: есть заряженный аккумулятор и нагрузка в виде резистора, нужно лишь измерять ток, напряжение и время в ходе разряда АКБ, и по полученным данным рассчитать его емкость. В принципе, можно обойтись вольтметром и амперметром, но сидеть за приборами несколько часов удовольствие сомнительное, поэтому намного проще и точнее можно сделать это используя регистратор данных. Я в качестве такого регистратора использовал платформу Arduino Uno.

С измерением напряжения и времени в Arduino проблем нет – есть АЦП, но чтобы измерить ток нужен шунт. У меня появилась идея использовать сам нагрузочный резистор в качестве шунта. То есть, зная на нем напряжение и предварительно измерив сопротивление, мы всегда можем рассчитать ток. Поэтому простейший вариант схемы будет состоять лишь из нагрузки и АКБ, с подключением к аналоговому входу Arduino. Но было бы неплохо предусмотреть отключение нагрузки по достижению порогового напряжение на батарее (для Li-Ion это обычно 2,5-3В). Поэтому я предусмотрел в схеме реле, управляемое цифровым пином 7 через транзистор. Конечный вариант схемы на рисунке ниже.

Все элементы схемы я разместил на кусочке макетной платы, которая устанавливается прямо на Uno. В качестве нагрузки использовал спираль из нихромовой проволоки толщиной 0,5мм, имеющей сопротивление около 3 Ом. Это дает расчетное значение тока разряда 0,9-1,2А.

2. Измерение тока

Как было сказано выше ток рассчитывается исходя из напряжения на спирали и её сопротивления. Но стоит учесть, что спираль нагревается, а сопротивление нихрома довольно сильно зависит от температуры. Чтобы компенсировать ошибку я просто снял вольт-амперную характеристику спирали, используя лабораторный блок питания и давая ей прогреться перед каждым измерением. Далее вывел в Excel уравнение линии тренда (график ниже), которое дает довольно точную зависимость i(u) с учетом нагрева. Видно, что линия не прямая.

3. Измерение напряжения

Поскольку точность данного тестера напрямую зависит от точности измерения напряжения, я решил уделить этому особое внимание. В других статьях уже неоднократно упоминали метод, позволяющих наиболее точно измерять напряжение контроллерами Atmega. Повторю лишь вкратце – суть состоит в определении внутреннего опорного напряжения средствами самого контроллера. Я пользовался материалами данной статьи.

Код не представляет из себя ничего сложного:

Каждые 5 секунд данные о времени, напряжении батареи, токе разряда, текущей емкости в мАч и ВтЧ, а также напряжении питания передаются в последовательный порт. Ток рассчитывается по полученной в п. 2 функции. По достижении порогового напряжения Voff тест прекращается.
Единственным, на мой взгляд, интересным моментом в коде я бы выделил использование цифрового фильтра. Дело в том, что при считывании напряжения значения неизбежно «пляшут» вверх-вниз. Сначала я пытался уменьшить этот эффект просто сделав 100 измерений за 5 секунд и взяв среднее. Но результат по-прежнему меня не удовлетворил. В ходе поисков я наткнулся на такой программный фильтр. Работает он похожим образом, но вместо усреднения он сортирует все 100 значений измерений по возрастанию, выбирает центральные 10 и высчитывает среднее из них. Результат меня впечатлил – флуктуации измерений полностью прекратились. Я решил использовать его и для измерения внутреннего опорного напряжения (функция readVcc в коде).

Читайте также:  Гибкий неон надпись своими руками

Данные из монитора последовательного порта в несколько кликов импортируются в Excel и выглядят следующим образом:

Далее легко построить график разряда АКБ:

В случае с моим Nexus 5 заявленная ёмкость аккумулятора BL-T9 – 2300 мАч. Измеренная мной – 2040 мАч при разряде до 2,5 В. В реальности контроллер вряд ли позволяет сесть батарее до такого низкого напряжения, скорее всего пороговое значение 3В. Ёмкость в этом случае 1960 мАч. Полтора года службы телефона привели к просадке емкости примерно на 15%. С покупкой новой АКБ было решено повременить.
С помощью данного тестера было разряжено уже несколько других Li-Ion аккумуляторов. Результаты выглядят очень реалистично. Измеренная емкость новых АКБ совпадает с заявленной с отклонением менее 2%.
Данный тестер подойдет и для металл-гидридных пальчиковых аккумуляторов. Ток разряда в этом случае составит около 400 мА.

Источник

Тестер АА аккумуляторов

У вас есть куча АА аккумуляторов? Некоторые из них старые, другие новые, и надо определиться, какие из них можно взять с собой в поездку, а какие нет? Я люблю использовать аккумуляторные батареи, но я уверен, что характеристики некоторых из них не соответствуют тому, что написано на упаковке. Просто тестеры аккумуляторов измеряют напряжение, но нам необходимо знать ещё и ёмкость батареи, и сколько она держит заряд. Работу данного устройства можно увидеть в видео в конце статьи.

Шаг 1. Это задача для микроконтроллера!

Простым способом проверки аккумулятора является подключение к нему нагрузки и измерение времени за которое напряжение опустится ниже необходимого. Это простое решение, но оно требует наблюдения за вольтметром в течении длительного времени. С этим прекрасно справится микроконтроллер AVR, освободив ваше время. Мой измеритель тестирует аккумуляторы АА и сообщает их мощности в миллиампер-часах (мАч), поэтому вы можете сравнить их емкость.

Особенности

Прибором можно измерять несколько аккумуляторов одновременно с индикацией каждого на дисплее. Когда аккумулятор разрядится ниже допустимого уровня, он будет отключен. Когда все аккумуляторы протестированы, прибор оповещает об этом звуковым сигналом. Он определяет тип аккумулятора, его начальное напряжение и работает с NiCd и NiMh аккумуляторами. Конструкция основана на микроконтроллере ATmega168 который имеет 6 АЦП, которые будут использоваться для измерения напряжения батареи и тока нагрузки. Каждый аккумулятор требует два АЦП, поэтому одновременно можно измерять до трех аккумуляторов. Я построил два тестера, сначала на основе Arduino для отладки, а затем автономный, который является более компактным, и освобождает Arduino для других проектов.

Шаг 2. Основные части

Вот что нам понадобиться:

  • Arduino или ATmega168(328p) с обвязкой (см. схему).
  • ЖК-дисплей от Nokia 5510.
  • Три MOSFETs транзистора – используются для переключения нагрузки.
  • Резисторы для разряда батареи.
  • Резисторы для взаимодействия с дисплеем.
  • Маленький динамик.
  • Текстолит или макетная плата.
  • Разъем для батарей типа АА(с раздельными ячейками).
  • Корпус.
Читайте также:  Зимние рыбацкие ящики своими руками

Шаг 3. Схемотехника

Схема довольно проста, каждая батарея имеет свой нагрузочный резистор для разряда аккумулятора, когда транзистор открыт. АЦП микроконтроллера используется для контроля напряжения батареи. Второй АЦП подключен к транзистору для определения текущего напряжения на резисторе. Оно рассчитывается путем вычитания напряжения на транзисторе из напряжения аккумулятора. Деление напряжения на сопротивление дает значение тока. Умножьте это на время, и вы получите значение в мАч. Если вы посмотрите на код, вы заметите, что всё не так просто. Микроконтроллер измеряет состояние батареи каждую секунду. Таким образом, вместо подсчета мАч, я подсчитываю количество мкАч. 1 мАч = 1000мкАч, т.е. при отображении значение делится на 1000. Код хорошо прокомментирован, так что должен быть всем понятен.

Нагрузочный резистор
Резистор рассеивает много мощности, поэтому используйте достаточно мощный резистор. При тестировании NiCd и NiMH аккумуляторов (1.2В) рассеиваемая мощность составит более 1 Вт, так что используйте достаточно большое сопротивление, или несколько резисторов включенных параллельно. При большем токе, не забудьте использовать толстую проволоку для монтажа.
Я считал возможным тестирование аккумуляторов типа 14500 Li-Ion, так как они тоже АА, но сопротивление нагрузки для них должно быть больше. Если аккумулятор установлен, программа проверяет напряжение батареи, и не выполняет тест, если обнаруживает Li-Ion аккумулятор. Если бы я не сделал этого, нагрузочного резистор бы получал около 1400мА, что превышает максимальной рекомендуемой разрядный ток 450мА. Резистор бы рассеивал около 6 Вт, что очень много. Я мог бы разработать схему для тестирования Li-Ion аккумуляторов, добавив дополнительные транзисторы и нагрузочные резисторы, но мне это не нужно.

MOSFET (полевой транзистор)
Этот компонент действует как управляемый микроконтроллером переключатель. Когда он открыт, ток с аккумулятора проходит через нагрузочный резистор, постепенно разряжая его. Я вытащил полевой транзистор из старого компьютера. Любое подобное устройство должно работать до тех пор, пока сопротивление сток-исток низкое. 2МОм резистор обеспечивает 0В при вынутых аккумуляторах. Без него, АЦП может выдавать всё что угодно.

Дисплей
Я использовал LCD от старой Nokia 5510 которым достаточно легко управлять. Arduino работает от 5В, но дисплей и управляющие линии требуют не более 3,3В. Я сделал делитель напряжения из резисторов на 1800 Ом и 3300 Ом, который делят 5В до 3,3В. Дисплей имеет подсветку и я включил её через токоограничивающий резистор. Дисплей Nokia является графическим, так что я воспользовался этим и сделал анимированные иконки батареи, чтобы показать их состояние. Библиотеки управления этим дисплеем на основе контроллера PCD8544: http://code.google.com/p/pcd8544/

Шаг 4. Полная схема

Одна из схем предназначена для Arduino, а другая для автономного проекта.

Примечания
— Тестер дает не самый точный, однако вполне приемлемый результат.
— Падение напряжения на полевом транзисторе должно быть незначительным.
— После того как тестирование завершено, тестер продолжает показывать напряжение батареи — поскольку снимается нагрузка, напряжение вернется к минимальному приемлемому, но в действительности аккумулятор разряжен.

Шаг 5. Корпус

Вы можете использовать металлические или пластмассовый корпус, но я решил сделать деревянный. Эта часть проекта делалась довольно долго, но результат мне понравился

Шаг 6. Улучшение

Только через несколько дней после завершения проекта, я понял, что необходима возможность подключать аккумуляторы большего размера. Поэтому я добавил разъем в нижней части устройства, который просто предоставляет доступ контактам двух батарей. Теперь я могу проверить батареи, которые не помещаются в держатель батарей AA. Когда это не используется, разъем с крокодильчиками можно просто вытащить.

Источник

Оцените статью