- Автономный аккумуляторный паяльник
- Как сделать аккумуляторный паяльник
- Для сборки необходимо.
- Где приобрести радиодетали и др.
- Изготовление корпуса паяльника
- DC-DC преобразователь
- Инвертор питания
- Тестирование паяльника
- Поделки своими руками для автолюбителей
- Паяльник моментального нагрева на аккумуляторах, схема
Автономный аккумуляторный паяльник
Вы наверняка встречали на алиэкспрессе USB-паяльник (или же паяльник на 3хАА батарейках), работающего от 5 вольт, так же наверняка видели огромное количество видео на ютуб по переделке таких паяльников на литий-ионные аккумуляторы. Тем не менее я хочу поделиться своим опытом по переделке двух таких паяльников, потому, что мои переделки отличаются от всех других переделок повышением мощности паяльника в 4 раза. Но обо всем по порядку.
Израсходовав несколько комплектов щелочных батарей (одного комплекта хватает примерно на 30 минут) я задумался о переделке паяльника на литий-ионные аккумуляторы, что вскоре было исполнено. Установил 2 аккумулятора 18650 параллельно, так же установил драйвер зарядки li-ion аккумуляторов. Далее я провел некоторые подсчеты и измерения и получилось следующее:
- сопротивление жала паяльника 3.1 ома, при нагреве оно изменяется, но в вычислениях я это не учитывал
- напряжение от 3хАА батареек 4,5 вольта (падение напряжения при работе я не учитывал), напряжение аккумуляторов 3,6-4,2 (падение напряжения я так же не учитывал)
- расчетная мощность при работе от батареек (4,5/3,1)*4,5=6,5 ватт (хоть иногда на упаковке паяльника указана мощность 9 ватт), при работе от аккумуляторов от (3,6/3,1)*3,6=4,2 до (4,2/3.1)*4,2=5,7 ватт (здесь я не принял в расчет внутреннее сопротивление батареек и аккумуляторов, но расчеты теоретические, призваны показать как изменились параметры паяльника)
Как видите, параметры паяльника после переделки изменились не значительно, нагрев по прежнему занимал около 15 секунд. В таком виде паяльник проработал более года. Затем я купил абсолютно такой же еще один, и вот с ним я решил поэкспериментировать. Согласитесь, паяльник мощностью 6 ватт слабоват для большинства задач. Потому второй паяльник я решил запитать от 2 аккумуляторов соединенных последовательно. Вот теоретические расчеты мощности:
- сопротивление жала по прежнему 3,1 ома
- напряжение теперь в 2 раза выше, от 7,2 до 8,4 вольт
- расчетная мощность от (7,2/3,1)*7,2=16,8 до (8,4/3,1)*8,4=22,8 ватт (мощность возросла в 4 раза)
При этом передо мной встал вопрос о зарядке последовательно подключенных аккумуляторов при помощи все того же драйвера зарядки. В итоге родилась вот такая схема последовательно-параллельного переключения аккумуляторов:
Далее я проверил эту схему в обоих режимах с заряженным и разряженным аккумуляторами
Как видите, протеус показал иные расчетные значения, он то учел падения напряжений. На схеме не указан драйвер заряда аккумуляторов, но и так понятно, что заряжать аккумуляторы надо в параллельном режиме.
Теперь конкретно о переделке паяльников. Если в первоначальном варианте я делал не съемные аккумуляторы, то после решил отказаться от такой идеи. В итоге были приобретены 2 «холдера» для аккумуляторов 18650. Один из них был предназначен для последовательного подключения аккумуляторов изначально, поэтому я решил вообще не заморачиваться с параллельно-последовательным подключением аккумуляторов, и сделал чисто 8-вольтовый паяльник. Заряжаю аккумуляторы отдельным заводским зарядным устройством, предназначенным для 2 аккумуляторов 18650.
Во втором паяльнике я воплотил параллельно-последовательную схему на тумблере типа ON-OFF-ON. Тумблер ложится между указательным и безымянным пальцами и совсем не мешает при работе. Холдер для аккумуляторов предназначался для установку на плату, с обоих сторон у него стоят одинаковые пружинящие пластины, поэтому аккумуляторы можно ставить в любом положении, что немного напрягает и заставляет вспомнить что куда подключено при каждой смене аккумуляторов. Можно заметить, что этот паяльник больше предыдущего, как раз из-за тумблера. На фото паяльники кажутся кривыми, это так и есть.
В обоих случаях холдер приклеен к передней части паяльника при помощи термоклея, который не очень хорошо держится на глянцевой поверхности холдера и периодически отваливается. Поэтому я опять же периодически подматываю паяльники изолентой, а в крайних случаях разбираю и переклеиваю.
Ну и в заключении:
- паяльник стал нагреваться за 5 секунд +
- при этом теплоемкость жала остается маленькой, он быстро меняет температуру —
- паяльник способен нагреться до слабого вишневого свечения (примерно 600-650 градусов) +
- при этом жало может быстро обгореть, поэтому периодически убираем палец с кнопки —
- я этим паяльником спаивал 3 провода 1,5 мм 2 каждый, при этом приходилось прогревать эту скрутку 10-15 секунд +
У этих паяльников большой запас мощности, который почему то не используют при производстве.
Источник
Как сделать аккумуляторный паяльник
На канале Ака Касьян рассмотрен один из вариантов изготовления аккумуляторного паяльника. Подобный паяльник в интернет магазинах стоит от 15 до 50 долларов, но это нам не по карману, так что дешевле будет его сделать своими руками.
Смотрите с 1:50 минуты
Для сборки необходимо.
Жало с нагревателем, как его сделать, показано в ролике в конце публикации.
Литий ионный аккумулятор стандарта 18650, емкость чем больше, тем лучше. Плата зарядки одной банки литиевого аккумулятора с защитой на базе микросхемы TP4056. Модуль повышающего DC-DC преобразователя MT3608. Корпус от дешевой зарядки аккумулятора стандарта 18650, в котором будет собрана начинка паяльника. Небольшой выключатель с фиксатором, лишь бы размеры были компактными. Ток около 3 А и выше.
Где приобрести радиодетали и др.
Купить аккумуляторный паяльник можно в этом китайском магазине. DC-DC конвертор найдете там же, набрав в поиске: MT3608 2A Max DC-DC Step. Купить плату заряда в поиске по запросу: Li-Ion Professional 5V Micro USB 1A 18650.
Перед вами схема паяльника. Почему все так сложно, поймете позже.
Схема аккумуляторного паяльника
Изготовление корпуса паяльника
В самом начале готовим корпус. Слегка обработал, убрал все лишнее. Такой вариант удобен тем, что аккумулятор можно поменять или заменить в случае необходимости. Корпус может быть и другим, лишь бы аккумулятор вошел. Отлично подойдет пара медицинских шприцов 20 миллилитров.
Рабочую часть паяльника пришлось кое-как приспособить. Зафиксировал на клемму, сделанную из эбонита. Если работать паяльником непрерывно в течение десяти минут, то эбонит начинает слегка вонять. Но плюс использования этой кнопки в том, что она имеет латунную втулку с резьбой и никаких дополнительных примочек для фиксации рабочей части не нужно.
Корпус пластиковый и чтобы эбонитовый фиксатор его не поплавил, решил подрезать переднюю часть корпуса и заменить имплантом из стеклотекстолита. Потом все эти части склеил китайской эпоксидной смолой.
DC-DC преобразователь
Зачем он нужен? Дело в том что нагреватель рассчитан на рабочее напряжение около 9 вольт. Обойтись можно и без преобразователя. если использовать 2 аккумулятора, соединенных последовательно. Но в этом случае увеличиваются затраты, габаритные размеры и вес паяльника. К тому же станет проблематично заряжать паяльник от обычного юсб разъема.
А почему мастер не сделал нагреватель, заточенный под одну банку литий ионного аккумулятора, уже пояснил в первом ролике.
Вернемся к преобразователю. Довольно популярная штука. Максимальное выходное напряжение может быть около 28 вольт при токе до 2 А. Но реальные испытания показали, что он начинает кипеть уже притоках в 1 А. Если выходной выпрямительный диод и микросхема нагреваются безбожно, но в какой то момент температура перестает расти, то с дросселем вообще дела плохи. Через некоторое время начинает вонять. Поэтому решил его заменить. Под рукой оказался нерабочий китайский модуль стабилизатора напряжения на 3 А. Просто заменил один дроссель на другой.
Инвертор питания
Далее подключаем инвертор к литиевому аккумулятору, а еще лучше, к лабораторному источнику питания. На ход подаем напряжения 3,8-4 вольта. Вращением построчного резистора добиваемся 9 вольт выходного напряжения.
На плате заряда литиевого аккумулятора ничего не изменил. Ток заряда составляет в районе 1 А,что вполне устраивает. Единственное, что сделал, заменил 2 светодиодных индикатора. Использовал двухцветный светодиод, который вывел на видное место. Кстати, эта плата снабжена защитой, которая отключит аккумулятор, когда последний будет разряжен ниже критического уровня.
Если нужно долгое время работать в полевых условиях, то можно прихватить с собой пару заряженных аккумуляторов и быстро заменить их при необходимости.
Подключение нереально перепутать, если ориентироваться по картинке выше.
Помимо индикатора заряда добавил светодиод, загорается при включении паяльника.
Тестирование паяльника
А теперь, когда устройство сборе, можно и протестировать. Жало может нагреваться до температуры 350 градусов, но самая хорошее то, что инвертор позволяет регулировать выходное напряжение, следовательно и температуру нагрева жала. Так что, если есть желание, можно вывести переменный резистор в удобное место и получить аккумуляторный паяльник с возможностью регулировки температуры. Это один из плюсов использования инвертора.
Из минусов. Теряем 5-10 процентов мощности на преобразование. Это минус с учетом того, что инструмент портативный и каждый милливатт в этом случае дорог.
Паяльник можно использовать как USB зарядное устройство для аккумулятора стандарта 18650 – тоже небольшой бонус.
Самодельный аккумуляторный паяльник
Как сделать жало для паяльника
Источник
Поделки своими руками для автолюбителей
Паяльник моментального нагрева на аккумуляторах, схема
Всем привет, паяльников моментального нагрева я делал очень много, как сетевых, так и автономных. Некоторые из них раздал друзьям и родственникам, а другие, так и не обрели корпуса и до сих пор пылятся где то там.
Решил изготовить аналогичный паяльник для личного пользования, но не совсем обычный паяльник, а полностью автономной, то есть питается он от встроенного аккумулятора. Нагревается за пару тройку секунд и имеет возможность регулировки мощности. Конструкцию я бы назвал довольно удачной и удобной, этот паяльник импульсного типа, такие в частности бывают сетевыми и даже сейчас аналогичное можно купить, но не такой, как этот.
Покупные паяльники питаются от сети и в своем составе содержат железный, сетевой трансформатор, вторичная обмотка которого представляет толстую шину — замкнутое жало.
За счёт короткого замыкания и относительно большого сопротивления жала, последняя нагревается, принцип очень простой. Я уже показывал много схем и конструкций таких паяльников, в которых я использовал импульсный блок питания вместо железного трансформатора.
Данный же паяльник имеет схожий принцип работы, полностью импульсный, только внутри у него понижающий преобразователь напряжения. Преобразователь питается от высокотоковых литий-ионных аккумуляторов.
В составе преобразователя импульсный трансформатор, вторичная обмотка которого замкнуто железным жалом, ток в данной обмотки огромный, что вызывает нагрев жала.
На вопросы типа, — а почему не взять и просто не замкнуть жалом аккумуляторы минуя преобразователь отвечу кратко — убьёте аккумулятор или расплавите жало.
В этом же случае на вторичной обмотке напряжение очень мало, но за счёт большого сечения провода ток большой, плюс мы можем регулировать мощность преобразователя и температуру жала в целом.
Схема — это полноценный двухтактной понижающий преобразователь, только малых размеров.
Имеем импульсный, кольцевой трансформатор, которым управляют пара мощных мосфетов RF3205, а ими управляет шим контроллер SG3525.
Рабочая частота шим контроллера зависит от номиналов указанных компонентов, с таким раскладом частота на выходе будет около 30-32 килогерц.
Резистор R6 отвечает за мертвое время — это пауза во время которой транзисторы закрыты, нужна она для того, чтобы внутренний драйвер шим контроллера успел полностью разрядить затвор транзистора одного плеча, пока не открылся другой транзистор.
В данном случае, так как транзисторов у нас всего одна пара или по одной штучке в плече, делать мёртвое время большим нет смысла.
Конденсатор С4 отвечает за плавный пуск — это плавное увеличение длительности управляющих импульсов в момент запуска инвертора. Он исключает образование больших токов при пуске.
В схеме мы имеем несколько переменных резисторов, два из них подстрочные R2,R4, а третий R3 отвечает за регулировку мощности. По факту регулировка мощности заключается в том, что мы вручную меняем скважность управляющих импульсов и тем регулируя время нахождения транзисторов в одном из двух состояний, чем больше времени транзисторы открыты, тем больше и мощность.
Вторичная обмотка трансформатора — низковольтная, но ток в этой обмотки большой, она нагружено жалом.
Теперь по поводу того, что тут делает плата повышающего преобразователя МТ3608.
Изначально я планировал питать этот паяльник от трех высоко-токовых аккумуляторов 18650, но позже передумал, так как размеры паяльника в таком случае были бы большими. В итоге количество аккумуляторов снизил до 2, то есть суммарное, номинальное напряжение 7,4 вольта.
Полевые транзисторы и которые я использовал довольно классные, но для того, чтобы они полностью открылись и сопротивление их открытого канала было минимально возможным, ну чтобы не грелись, на их затвор нужно подавать управляющие импульсы с напряжением минимум 10 вольт.
А мы помним, что наш аккумулятор на 7,4 вольта, также минимальное, питающее напряжение шим контроллера SG3525 составляет 8 вольт, чтобы одним выстрелом убить двух зайцев микросхему запитал от платы преобразователя МТ3608.
На её вход поступает 7,4 вольта от аккумуляторов на выходе выставлено 12 вольт, которые поступают на шим контроллер, а основное, силовое питание берётся напрямую с аккумуляторов.
Введите электронную почту и получайте письма с новыми поделками.
Кнопка запуска паяльника просто подаёт питание на вход платы МТ3608, следовательно запускает управление и инвертор в целом, а силовое питание всё время подключено к аккумулятору и от них практически ничего не потребляет если кнопка не нажата.
Это по поводу схемы, теперь об компонентах…
Трансформатор кольцевой с проницаемостью 2300, производитель неизвестен, первичная обмотка изначально содержала 14 витков с отводом от середины, потом количество витков снизил, так как планировал питать преобразователь от более низкого напряжения.
Обмотка намотана литцендратом из сорока параллельных проводов диаметром 0,22 миллиметра в каждой жиле.
Конечно же все провода в лаковой изоляцией, вторичная обмотка два витка, также литцендрат, хотя можно использовать медную шину, а литцендрат выбран по той причине, что им легче мотать.
Количество жил вторичной обмотки 140, провод тот же, как и в случае первичной обмотки.
Полевые транзисторы любые с напряжением сток исток от 20,30 вольт и с токам стока в 30 ампер и более, подберите транзисторы с минимально возможным сопротивлением открытого канала.
На малой мощности транзисторы холодные, но их необходимо установить на радиатор, если радиатор общий подложки ключей обязательно нужно изолировать. В моем случае радиатором служат пара алюминиевых уголков.
Аккумуляторы вот такие стандарт 18650,
подключены последовательно. Это не обычные аккумуляторы, а высокотоковые, то есть их можно разряжать большими токами под 20,30 ампер. Обычные литий-ионные от ноутбуков тут не прокатят, так как схема жрёт огромные токи, особенно в момент разогрева жала.
Благо такой паяльник работает только тогда, когда вы паяете, то есть в момент нажатия кнопки, ну и мощность при желании можно сделать поменьше.
Батарея дополнена 20-амперной платой защиты,
данная плата защищает аккумуляторы от глубокого разряда, перезаряда и коротких замыканий. Плата снабжена ещё и системой балансировки банок, это очень важная опция, балансировка залог долгой и счастливой жизни литиевых аккумуляторов.
Плата защиты отключает аккумуляторы при достижении на них напряжения примерно 5,2 — 5,4 вольта и благодаря применению повышающего преобразователя МТ3608 инвертор прекрасно работает даже от такого низкого напряжения.
Кнопка запуска — практически любая без фиксации я поставил обычный микрик.
Жало можно сделать из железного прутка с диаметром 2-3 миллиметра, в моем случае это стержень от сварочного электрода. Железное жало в отличие от медного, разогревается быстрее и самое важное — ну почти вечное, менять такое жало вам придётся через многие годы, даже если активно пользоваться паяльником.
Жалу придаём примерно вот такую форму,
а кончик обрабатываем, чтобы уменьшить его диаметр, это нужно для того, чтобы именно кончик нагревался быстрее.
Такое жало очень легко облуживается, работать им удобно. Держатели жала сделаны из латунных монтажных клемм.
Настройка..
Если всё собрано правильно, правильно рассчитан трансформатор, все компоненты оригинальные и нет соплей на плате, схема заработает сразу.
Наладка достаточно простая, сначала вам нужно установить жало, затем путём вращения подстроечников R4,R2 выставить лимиты мощности, то есть ограничить максимальную мощность паяльника так, чтобы жало не расплавилась, а нагрелось максимум до 450-500 градусов. А нижней лимит необходимо выставить таким образом, чтобы при положении минимальной мощности основного переменника жало нагрелось градусов до 250-300.
Я специально установил эти подстроечные резисторы, чтобы вы могли подгонять паяльник под определенное жало,
например если жало тонкое, то максимальная длительность импульсов может его попросту расплавить и длительность нужно ограничить, а если жало толстое, мощности может не хватать для нормального разогрева и подстроечниками нужно её добавить.
Ну а основной переменник R2 у нас сугубо будет менять мощность в пределах выбранных лимитов.
Но учитывая то, что железное жало буквально вечное, то есть его менять не придётся, можете основной переменник тоже заменить подстроечным, выставив оптимальную температуру для пайки и больше не трогать его, а если нужно регулировка мощности данный резистор выводится за пределы корпуса и делается аналоговая шкала температур.
Я хочу, чтобы вы правильно поняли, регулировка мощности тут есть, но это никак не термо-стабилизация, выставленная температура на жале не будет поддерживаться стабильным и зависит от питающего напряжения.
Корпус взят от электронного трансформатора 150 Вольт-ампер.
Корпус железный с отверстиями для естественного охлаждения.
Одна из боковин корпуса убрана, на её месте кусок текстолита, на котором приклеены держатели жала.
Дно корпуса изолировано несколькими слоями каптонового скотча во избежании случайных КЗ между дорожками платы и корпуса.
Трансформатор дополнительно зафиксирован эпоксидкой, держатели — суперклеем с добавлением соды,
это не лучшее решение с точки зрения эстетики и ремонтопригодности, но тут ломаться нечему, а на выставку паяльник отправлять я не собираюсь, поэтому над внешним видом особо не старался.
Аккумуляторы установлены в рукоятке. Рукоятка взята от древнего паяльника такого же плана, она сделана из пластика.
Какая мощность у такого паяльника? Учитывая кратковременный режим работы с соответствующим трансформатором можно снять хоть 200 ватт, в моем случае максимальная мощность ограниченна на уровне 120 ватт, трансик у меня маленький, да и условия охлаждения не ахти.
Этого более чем достаточно, но если использовать тонкое жало, например 1-1,5 мм, то мощности в 20-40 ватт будет вполне достаточно для комфортной работы, такое решение более предпочтительное, так как увеличивается время автономной работы.
Я думаю нет необходимости отвечать на вопрос по поводу того насколько хватит аккумуляторов, это решаете вы, чем толще жало, тем больше мощности уходит на его разогрев, следовательно аккумуляторы будут разряжаться быстрее.
Учитывая, что данный паяльник включен только в момент пайки, заряда батареи хватит на достаточно продолжительное время.
В самом конце я добавил небольшой светодиод, который светится только в момент работы паяльника, освещая зону пайки и одновременно является индикатором работы.
Паятельными характеристиками данного паяльника очень доволен, у меня есть довольно мощный аккумуляторный паяльник, но ему нужно около 20-30 секунд на разогрев жала, а наш девайс разогревается гораздо быстрее всё зависит от выставленной мощность и толщины жала. Можно сделать так, чтобы паяльник был готов спустя 3-4 секунды после нажатия кнопки.
Паять можно и массивные компоненты, мощности хватит. Остывает жало тоже быстро, что немаловажно, правда если работать продолжительное время без отдышки нагреваются латунные держатели.
Основные фишки я думаю понятны. Относительно компактные размеры и легкий вес, по сравнению с промышленными паяльниками аналогичного принципа нагрева, полная автономность, быстрый разогрев, достаточно большая мощность.
Источник