АКТИВНОЕ ОХЛАЖДЕНИЕ РАДИАТОРОВ
При протекании больших токов в цепях, выделяется энергия в виде тепла. Примером таких цепей могут служить блоки питания, усилители низких/высоких частот, ШИМ-контроллеры, выпрямительные диоды. Для отвода тепла используют металлические радиаторы разных форм и размеров, соответственно площадей. Не редко возникает проблема отвода тепла от самого радиатора, в случаях когда радиатор не совсем хорошо справляется с поставленной задачей. Для устранения этой проблемы, часто используют «кулеры» (вентиляторы), устанавливаемые на радиатор.
Также возникла проблема устранения шума, производимого вентилятором при слабых нагрузках. При слабых нагрузках радиатор холодный и хорошо справляется со своей задачей, при сильных нагрузках – горячий. В обоих случаях вентилятор вращается с одинаковыми оборотами, производя шум, даже когда охлаждение радиатора особо не нужно. Для устранения данной проблемы, была отыскана самая простая аналоговая схема регулировки (изменения напряжения, при изменении темепературы) оборотов вентилятора. Данная схема не критична к заменам транзисторов на другие, тех же проводимостей (NPN,PNP).
Схема
Изначально в схеме, в качестве датчика температуры использовался транзистор КТ315. После нескольких опытов, были следующие замечания по поводу использования этих КТ315:
Плюсы : Наличие. КТ315 навалом, они дешевые и очень распространенные. Размеры – размер КТ315 позволяет поместить его между ребер некоторых радиаторов.
Минусы : Температура. Так как у КТ315 корпус не из металла, теплопроводность малая, следственно и регулировка оборотов будет не чувствительная. Отсутствие крепления (отверстия для болта крепления к радиатору).
Из-за низкой чувствительности к изменениям температуры, пришлось заменить КТ315 на КТ940 (коих также навалом) в корпусе ТО126, с отверстием для болта и металлическим основанием. Транзистор прикручивается к радиатору/источнику тепла с использованием теплопроводной пасты.
В качестве второго транзистора, управляющего нагрузкой, подбирается любой подходящий по параметрам нагрузки и проводимостью (PNP). Печатная плата регулятора не создавалась потому, что его можно собрать навесным монтажом.
Настройка
Настройка регулятора производится следующим образом: при помощи подстроечного резистора выставляется нижний предел напряжения на нагрузке, позволяющий вентилятору работать на малых оборотах или вовсе не вращаться. Я остановился на втором варианте, подключив параллельно нагрузке вольтметр, выставил напряжение около 2,5 (В).
Видео работы устройства
Данная схема исправно работает в моем блоке питания. При существенном нагреве радиатора – вентилятор постепенно, в зависимости от температуры датчика (КТ940), изменяет свои обороты. Таким образом, можно избавиться постоянной работы вентилятора, снизить шумы и потребление энергии вентилятором. Холодные радиаторы всем! С Вами был BFG5000.
Форум по обсуждению материала АКТИВНОЕ ОХЛАЖДЕНИЕ РАДИАТОРОВ
Простой переходник для корпусов TQFP с самоцентрированием микросхемы, собранный своими руками.
Коммуникационный протокол UART — что это и как он работает, подробное описание интерфейса и распиновка разъёмов.
Увеличение мощности интегральных усилителей транзисторами. Рассматривается на примере схем LM3886 и TDA7294.
Источник
Делаем «умную» систему активного охлаждения для мини-компьютера или медиа-приставки
Многие мини-компьютеры или медиа-приставки используют пассивную систему охлаждения. Это могут быть устройства с процессорами Intel Atom и ОС Windows или множество моделей с Android. У части этих устройств есть одна общая проблема — неэффективная система охлаждения. При продолжительной нагрузке и превышении определённого порога температуры начинается троттлинг — процессор начинает снижать частоту, отключать ядра и пр. Производительность падает. Иногда это не сильно заметно, а иногда мешает комфортной работе с устройством. Производители просто не уделяют системе охлаждения достаточно внимания, считая троттлинг нормальным поведением стационарных систем.
Посмотрите, например, тематические форумы, там чуть ли не в каждой второй теме мини-компьютеров или медиа-приставок обсуждаются вопросы модификации системы охлаждения. Изначально пытаются решить проблему доработкой пассивного охлаждения. Если это не удаётся, переходят к активному охлаждению с помощью вентилятора. Я расскажу, как сделать простое «умное» активное охлаждение с минимальными затратами.
Единицы мини-компьютеров и медиаплееров с пассивным охлаждением имеют на плате выводы питания для вентилятора с возможностью настройки режима работы. Обычно берут вентилятор на 5 В и подключают (подпаивают) его к внутренним контактам питания USB разъёма или разъёму питания самой медиа-приставки. Просто и эффективно. В этом случае вентилятор работает постоянно во время работы медиа-приставки, что не всегда приемлемо или комфортно из-за шума.
- Программируемый терморегулятор W1209 (цена от 1,7$)
- Повышающий преобразователь 5 В > 12 В (цена от 0,8$)
- вентилятор на 5 В или 12 В
- паяльник (пайки минимум, она простая)
Программируемый терморегулятор W1209
Это компактное устройство, которое предназначено для поддержания определённой температуры. Сфера его применения очень широкая. Его можно использовать для автоматизации нагрева (например, промерзающих труб или бойлера, обогрев растений, инкубатора), вентиляции (например, теплиц), охлаждения и пр., вариантов множество.
Характеристики W1209:
- Управляющее напряжение 12 В.
- Коммутируемый ток до 14 В (постоянное) / 20 А или до 250 В (переменное) / 5 А.
- Диапазон установки температур от -50 ºС до 110 ºС.
- Диапазон гистерезиса от 0,1 ºС до 15 ºС.
- Регулировка задержки срабатывания до 10 минут.
- Два режима режима работы: C — охлаждение, H — нагрев.
- Размер: 48x40x14,5 мм
Комплект поставки: терморегулятор и датчик температуры.
Принцип работы простой. В режиме C, охлаждение, контакты реле разомкнуты, пока температура ниже установленной. Как только температура превышает установленную, контакты реле замыкаются и остаются в таком положении, пока температура не снизится на величину гистерезиса. Например, к коммутирующим контактам подключен вентилятор, терморегулятор установлен на температуру 70 ºС, гистерезис 15 ºС. Как только терморегулятор фиксируют температуру 70 ºС на датчике, контакты реле замыкаются, и вентилятор начинает работать. Выключится он, когда температура опустится до 55 ºС.
В режиме H, нагрев, принцип работы обратный. Контакты реле замкнуты, пока температура ниже установленной плюс величина гистерезиса. Как только температура превышает установленную плюс величину гистерезиса, контакты реле размыкаются и остаются в таком положении, пока температура не снизится до установленной.
Программировать терморегулятор просто, настройки сохраняются. Нажимаете кнопку SET и с с помощью кнопок + и — выставляете температуру срабатывания. Если держать кнопку SET 5 секунд, то попадёте в меню настроек:
- P0. Режим работы: C или H.
- P1. Гистерезис от 0,1 ºС до 15 ºС.
- P2. Установка максимальной температуры от -45 ºС до 110 ºС (по умолчанию 110 ºС).
- P3. Установка минимальной температуры от -50 ºС до 105 ºС (по умолчанию -50 ºС).
- P4. Коррекция температуры от -7 ºС до 7 ºС.
- P5. Задержка срабатывания от 0 до 10 минут (по умолчанию 0).
- P6. Защита от перегрева. Если включить, то при 110 ºС терморегулятор отключится.
Повышающий преобразователь
Это простой преобразователь 5 В > 12 В. Он нам нужен для того, чтобы обеспечить управляющее напряжение для терморегулятора. Ещё он понадобится, если вы решите использовать вентилятор на 12 В, вместо 5 В.
Все эти устройство нужно будет установить внутри мини-компьютера или медиа-приставки. Вот фотография для оценки размеров:
Я буду рассматривать вариант, когда вся конструкция подключается к внутренним контактам питания одного из USB разъёмов. Конечно, можно подключить и к разъёму питания самой медиа-приставки. Более того, если на входе 12 В, то и преобразователь не понадобится. Схема подключения будет немного иной. Но я буду рассматривать конкретный универсальный вариант.
Для демонстрации я буду использовать вентилятор на 12 В, но подавать на него буду напряжение 5 В. В реальной ситуации так делать не нужно, т.к. эффективность слабая. Вентилятор должен быть рассчитан на напряжение 5 В. Для питания я буду использовать обычный кабель USB, но в реальной ситуации нужно подключить (припаять) провода к внутренним контактам USB на плате медиа-приставки.
Схема подключения очень простая:
Если вы будете использовать вентилятор на 12 В, то его нужно коммутировать к выходам на преобразователе.
Т.к. ток слабый во всей схеме, используйте тонкие гибкие провода для соединения. Для демонстрации я использовал толстые. Дополнительно можете залить термоклеем места пайки для надёжности, нагрева со слабой нагрузкой там нет. Пайку проводов нужно изолировать с помощью термоусадки или изоленты. При необходимости укоротите провод датчика температуры до нужной длины.
Готовая демонстрационная система:
А вот, как система работает:
Размещаете конструкцию внутри корпуса мини-компьютера или медиа-приставки. Датчик температуры крепите к радиатору SoC.
Например, вы можете установить температуру включения вентилятора 70 ºС, а гистерезис 15 ºС. В обычном режиме, при просмотре видео, просмотре веб-страниц и пр., будет использоваться пассивное охлаждение. Но при нагрузке, например, играми, как только радиатор нагреется до 70 ºС, вентилятор включится и будет работать до тех пор, пока температура не опустится ниже 55 ºС.
В итоге за 2,5$ и 30 минут работы мы добавили немного «мозгов» активной системе охлаждения. Минус у этой системы только один — электромеханическое реле, которое издаёт щелчок при замыкании контактов (включение вентилятора). Идеально было бы его заменить на твердотельное реле или транзистор, чтобы работало бесшумно, но это уже другая история…
Источник
Установка активного охлаждения на некоторые компьютерные части своими руками
Введение
В наши дни компьютер имеет каждый второй человек. И все хотят получить, большую производительность за меньшие деньги. Но как это сделать? Конечно же, я говорю о разгоне/оверклокинге, простой пример, зачем покупать старший по частоте процессор, если можно, разогнать до его частот младший. Всё было бы замечательно, но есть одно «НО», этим «НО» я является грамотное охлаждение внутрисистемного пространства.
Как его грамотнее организовать? На какие компоненты системы ставить? Я предложу вам свой способ модернизации некоторых компьютерных устройств. Охлаждение процессора я не стал затрагивать, так как в Интернете, полно различных сравнений и тестирований различных кулеров. По этой причине, я решил написать руководство, по простой и безболезненной модернизации материнской платы и вашего видео. Ещё хотелось бы сказать, что эта статья скорее призвана помочь начинающим, сомневающимся людям, нежели адептам в таком не лёгком деле как оверклокинг.
Также приведу данные о моей системе (она стабильна 100%):
Pentium 4 2,[email protected],2 (Step. DO) (264*12) (1,6V) (Northwood)
Zalman CNPC7000Cu (2000об/мин)
Kingston DDR400, (2.5/3/3/5) (2.8V) 512 mb*2 (Dual Channel)
Материнская плата -Asus P4P800 Gold
HDD Maxtor Diamond 9 Plus 160 Гб
БП 300W Powerman
Дополнительные вентиляторы: 1-на выдув (80мм), 1-на вдув (80мм), 1-на электронике винчестера, с боку 92мм Zalman- все они подключены через Thermaltake Hardcano 9
WinXP SP2 (сборка 5100), система установлена на локальный диск С, объёмом 15Гб все, ненужные сервисы и службы отключены.
Температура видеокарты замерялась с помощью термопары, около ядра. Также для проверки температуры использовались следующие программы:
Asus PcProbe v2.20.07
Драйверы видео – Catalyst 5.1
Для прогрева памяти и процессора — S&M 0.3.2a
Для проверки видео:
3DMark 03 patch 340
3DMark 05 patch 110
Статья будет состоять из нескольких этапов:
Модернизация охлаждения материнской платы
Сегодня наборы системной логики I865PE/I875P очень популярны среди обычных пользователей и, конечно же, оверклокеров. Они обладают отличной производительностью и хорошим потенциалом к разгону.
Всем знакома материнская плата P4P800 от Asus. И всё бы в ней хорошо и дизайн и возможности для разгона, да вот охлаждение подкачало. На плате оно реализовано с помощью пассивного кулера, что явно не способствует разгону. В принципе, в результате доработки должна повыситься стабильность системы при работе на высокой частоте шины 285-300МГц.
На моей плате P4P800 rev.1.02 этот радиатор серебреного цвета. Хотелось бы сразу отметить, что при модернизации гарантия не теряется, при условии прямых рук. Я не несу ответственность за испорченные платы. Всё что здесь описано в данной статье, Вы делаете на свой страх и риск.
Что нам понадобится:
термопаста КПТ-8, Алсил 3
гигиенические палочки 3-4 шт. + спирт
вентилятор из комплекта Titan TTC-CUV2AB для видеокарт или любой другой 40*40мм
краска (серебряная/черная) или вообще не нужна, если вентиль черный
отвертка с широким жалом
Извлекаем материнку из корпуса, также потребуется только снять видеокарту и оперативную память. Нам нужно снять аккуратно радиатор, не задев текстолит материнки, чтобы избавиться от старого термоинтерфейса. Для этого возьмём отвертку с широким жалом и надавим на крючки сверху вниз, как показано на рис.1:
Под радиатором находится северный мост, в моем случае покрытый отвратительной субстанцией розового цвета. Всё это безобразие мы смываем с помощью гигиенических палочек, смоченных в спирте или растворителе. На его место наносим тонкий слой хорошей термопасты КПТ-8 или любой другой, благо выбрать есть из чего. Также не забудьте стереть остатки старой термопасты с задней части радиатора. Теперь проделываем всю операцию обратно, т.е. устанавливаем радиатор на чип.
Когда радиатор установлен на свое старое место, можно приступать к установке вентилятора, но нам надо не потерять гарантию, как же это сделать? На радиаторе есть надпись Asus, на неё мы наклеиваем тонкую полоску скотча:
Далее мы берем вентилятор из комплекта для видеокарт Titan TTC-CUV2AB, изначально он золотистого цвета, конечно, это хорошо, только мне захотелось, чтобы он был одного цвета с радиатором, т.е. серебристого цвета. В кладовке был найден баллончик с краской Motip серебристого цвета. Вентиль был сразу же перекрашен в другой цвет. Сушился он час или полтора. Вы можете либо красить вентиль, либо нет.
После всего этого вы берете Супер-клей и капаете несколько капель, на то место, где наклеен скотч и на него сверху ставите вентилятор. Итак, что же мы получили на выходе? Температура опустилась, примерно на 3-5 градусов, также установка дополнительного охлаждения положительно сказалась на разгоне моего процессора. Удалось поднять шину ещё на 5МГц, таким образом, теперь у меня 264*4 итого 1057МГц. На практике мы видим прирост в скорости после нехитрых манипуляций. Ещё об условиях тестирования. После всего этого мне очень захотелось узнать, действительно ли температура так сильно упала. Для проверки запускалась утилита S&M на 5 минут, до и после модернизации. В таблицу пошли данные по температуре северного моста и процессора. Кстати, хотел сказать, что южный мост у меня не голый, на нём стоит маленький пассивный радиатор, на клейкой термопасте. Собственно вот и диаграмма:
Я думаю, комментарии излишни. Даже, казалось бы, простейший мод может увеличить разгонный потенциал и понизить температуру. Теперь обратим своё внимание, на видеокарту, как на другой «нагревательный прибор» в вашем корпусе.
Замена охлаждения на видеокарте ATI RadeOn 9800 @ Pro
Итак, мною была приобретена, видеокарта ATI Radeon 9800 128мб, в исполнении от Sapphire, но, видимо, она была из первых серий, поэтому на ней даже не была заменена наклейка Ati на кулере. Плата представляет полностью референсный дизайн от фирмы производителя. Единственное, что меня огорчило — это была относительно медленная память с временем цикла 3,2 нс в исполнении от Samsung. Вот и она:
Старшая сестра отличается от моей тем, что на них обычно устанавливают более быструю память с временем отклика 2,8 нс , что обеспечивает работу на частоте 700 МГц.
Таким образом частоты «Про» версии 378/680МГц, а моей 325/580. Я думаю, вы поняли мою идею? Да, да модернизировать 9800 в 9800 PRO. Но для этого надо модернизировать охлаждение чипа и памяти, потому как с родным охлаждением далеко не уедешь:
Одной отличительной чертой этого кулера является отличное прижатие к ядру, за счёт маленького бугорка на его задней части. Не будем забывать, что вокруг ядра всего старшего поколения Радеонов, была защитная рамка. Её можно легко снять, но тогда мы бы потеряли гарантию, что крайне нежелательно. А где же наш подопытный процессорный кулер? Это будет GlasialTech Igloo 4100GE для Pentium 4 :
Очень хороший кулер, с золотым напылением, и тихим вентилятором. Было решено подвергнуть его лёгкой обработке и установить на видеокарту. Лёгкая обработка представляет собой доработку под профиль видеокарты. Вот и некоторые характеристики, и данные о подопытном кулере:
Максимальная Частота охлаждаемого процессора – Pentium 4 3.0Ghz
Размеры 83х69х53 мм
Масса (с вентилятором) 357 грамм
Таким образом, пришлось подрезать радиатор на токарном станке там, где в него упирались конденсаторы системы питания видео. Рамку, которая должна, по идее, прижимать кулер к центральному процессору, пришлось снять и привинтить вентилятор на саморезы прямо между рёбрами радиатора. Также была нарезана резьба с тыльной стороны радиатора, для двух стандартных отверстий, и были вырезаны кое-где кусочки радиатора для мелких деталей, типа конденсаторов и т.д.:
Кулер прижат отлично к видеокарте. Болты были снабжены резиновыми прокладками, дабы избежать повреждение текстолита. Между ядром и кулером была намазана тонким слоем термопаста КПТ-8. Также между рёбер радиатора была установлена термопара, подключённая к Hardcano. В итоге мы получаем следующего монстра:
Но это ещё не всё, нам надо ещё поставить на память радиаторы. Но где же их взять?
Кулера под рукой не было, зато был бесшумный кулер от Zalman ZM80D-HP, выполненный на двух тепловых трубках. Я пробовал его устанавливать, но лично мне он показался не эффективным при разгоне, потому что он играл в корпусе роль сковородки, от его огромных плоскостей нагревалось все… Но с ним в комплекте шли отличные радиаторы на память, которые я и применил:
Собственно, после всех проделанных манипуляций, карта была установлена в слот AGP, без каких- либо проблем. Было маленькое волнение из-за массы кулера, но вроде бы всё обошлось. Разгонял видео я RivaTuner-ом. С новым охлаждением плата отлично разогналась и с лихвой перекрыла частоты старшей сестры, с «родных» 325/580МГц она погналась до 410/710МГц. Было решено прошить БИОС от Radeon 9800Pro с памятью Samsung 2.8 нс. Прошил. Всё отлично! Драйверы распознали новую видеокарту, и я прогнал несколько тестов и ни одного артефакта, или полоски! Теперь взглянем на температуру карты в простое и при прогонке тестов из пакета 3D Mark 03/05: температура видеокарты в режиме простоя — 24°С, при загрузке — 41°С.
Некоторые результаты бенчмарка 3D Mark 03 (default), дабы мы могли увидеть прибавку от разгона:
Итак, в результате наших простых модернизаций, мы смогли поднять производительность компьютера, на новый уровень. Охлаждение материнской платы помогло увеличить частоту шины на 5МГц, соответственно частота процессора, тоже подросла. Также мы модернизировали, видеокарту, получив прирост в разгоне по ядру: 26%, по памяти: 22%. К тому же теперь у меня в корпусе красуется 9800Pro, что не может не быть приятным
Мне, будет очень приятно, если это руководство, поможет кому-нибудь сделать, что-то новое для своего компьютера, повысить его производительность. Удачи!
Источник