Изготовление алмазного инструмента. Вебинар №5
Сегодня проведем вебинар на тему «производство алмазного оборудования для фасонной обработки камня».
В качестве эксперта в данном вопросе будет присутствовать Александр, один из руководителей Полтавского предприятия по производству алмазного инструмента и оборудования для обработки природного камня, агломератов и других строительных материалов.
Изначальная направленность работы предприятия — это разработка и производство инструмента и оборудования для фасонной обработки природного камня.
Инструмент изготавливается для всех видов работ с камнем , от ручной обработки до работы на станках с ЧПУ.
Предприятие изготавливает как основной ассортимент инструмента, так и нестандартный инструмент (от миниатюрного до крупногабаритного) который согласовывается с заказчиком индивидуально.
Алмазного напыления не бывает
Я очень часто пользовался термином «алмазное напыление», и у вас, скорее всего, этот термин ассоциируется с чем-то подобным:
Но из нашей беседы с Александром выяснилось, что данный термин не совсем верный и подобный инструмент делается совершенно по другой технологии.
Насколько я понял, технологии алмазного напыления в области камнеобработки — нет, а режущая кромка формируется гальваническим способом
Честно говоря, этого не знал.
Вот некоторые фрезы с алмазным покрытием, о которых мы говорили:
Здесь выдны различные технологии формирования режущего слоя
Фрезы для обработки кромки, изготовленные по разным методам
Круглая фреза (используется для изготовления каннелюры :))
Мне кажется тема изготовления алмазного инструмента очень интересной и разобраться в различных технологиях очень полезно, поэтому приглашаю вас сегодня (пятница 11 апреля) в 20.00 на вебинар.
Запись вебинара по алмазному инструменту
Конкурс кроссвордов!
Конкурс завершился — результаты конкурса опубликованы и их можно посмотреть по этой ссылке:
«ИТОГИ КОНКУРСА КРОССВОРДОВ»
Опубликован 5-й кроссворд из конкурса
Желаю удачи!! На следующей неделе появится таблица с результатами
Источник
Инструментальные покрытия: прочность алмаза
Автор: Юлия Рощина, специально для www.EquipNet.ru
Фотографии с сайтов plasmacentre.ru, plasmacentre.ru, wlkw.narod.ru
А втоматизации процессов в современном производстве требует максимального повышения эффективности, что в свою очередь, повышает требования к качеству и износостойкости инструментов. Наиболее прогрессивный метод улучшения рабочих качеств инструмента – нанесение на его поверхность специальных покрытий, обладающих необходимыми свойствами. Покрытие сообщает предмету свою твердость или вязкость, химическую стойкость или теплопроводность, а также увеличивает запас прочности.
Покрытия на основе титана
Титановые покрытия значительно повышают поверхностную твердость основы даже при очень высоких температурах, в результате износостойкость инструмента многократно увеличивается. За счет снижения трения между инструментом и объектом обработки, зачастую отпадает необходимость применять охлаждение, а скорость работы возрастает от 10 до 50 %. Обыкновенно, их используют для обработки твердосплавных инструментов, например, сверл и разнообразного режущего оборудования. Покрытие нитрид титан-алюминия (TiAlN) позволяет сохранять твердость 2800 HV даже при температуре 7500, применяется для работы по материалам сложным для обработки. Нитрид титана (TiN) остается твердым при 5400, его используют для модификации хирургических инструментов и оборудования пищевой промышленности. Очень твердое покрытие карбонитрид титана 4000 HV (TiCN) применяется для работы по чугуну, кремнистому алюминию, абразивным материалам.
Эпиламы
Фторсодержащие растворы, называемые эпиламами, создают на поверхности предметов тончайшую пленку, которая придает им коррозионную стойкость, защищает от влаги, снижает поверхностную энергию и трение, а, в конечном счете, повышает износостойкость. Область применения необычайно широка: от обработки режущего инструмента до микросборок и радиоплат печатного монтажа. Например, «Эпилам 6СФК-180-05» применяется для металлорежущего, металлообрабатывающего, деревообрабатывающего инструмента, для придания износостойкости и антиадгезионных свойств поверхностям. Кроме того, его используют в различных отраслях машиностроения и приборостроения.
Хром-алмазные покрытия
Технология хромирования с применением кластерных наноалмазов детонационного синтеза была разработана в опытно-конструкторском бюро ООО «РАМ». Отталкиваясь от широко распространенного метода электролитического хромирования, инженеры компании ввели в состав электролита коллоидный раствор кластерного (ультрадисперсного) наноалмаза, который изменил механизм осаждения металла. Структура такого покрытия значительно улучшает адгезию хрома и копирует микрорельеф поверхности, что увеличивает предельные напряжения сдвигового отрыва от основы. Наноалмазы, размером 4-6 нм, имеют свойство осаждаться вместе с металлом из растворов солей при электрохимическом и химическом восстановлении. В результате образовывается двухфазное композиционное электрохимическое покрытие: слой хрома, в который внедрены дисперсные частицы наноалмазов. Эти алмазы по форме близки к сфере или овалу, и состоят из твердого инертного ядра, покрытого химически активной оболочкой. В зависимости от того, какие вещества выбираются в качестве оболочек, состава электролита и нюансов технологического процесса, возможно получение покрытий с различными заданными свойствами. Такое покрытие по износостойкости в 2-6 раз надежнее по сравнению с обычным твёрдым хромированием, его микротвёрдость — 1400 HV, при толщине покрытия от 0,5 до 500 мкм. Основой могут служить любые инструментальные, углеродистые, штамповые стали, чугун, медь, латунь.
Методики нанесения покрытий
На сегодняшний день разработано множество методик нанесения покрытий. Их можно разделить на две большие группы: методы химического и физического осаждения покрытий. Физические методы: ионно-плазменное напыление, генерация потока осаждаемого вещества термическим испарением (газотермическое напыление), лазерное и электроискровое упрочнение. Химические методы: эпиламирование
Газотермическое напыление включает электродуговую металлизацию, газопламенное напыление и плазменное напыление. Принцип прост: расплавленный электрической дугой или пламенем ацетиленовой горелки порошок или проволока распыляются по обрабатываемой поверхности. Обыкновенно, метод применяется для упрочнения и защиты деталей машин.
Лазерное и электроискровое упрочнение используется для нанесения покрытий на режущий инструмент и технологическую оснастку. Процесс основан на свойствах плазменных импульсных искровых разрядов между электродом и обрабатываемой поверхностью. Работа проводится в воздушной среде. Электрод периодически касается поверхности, перенося на нее металл.
Эпиламирование повышает износостойкость режущего инструмента, образуя на поверхности мономолекулярную пленку. Обрабатываемый предмет погружается в раствор (либо раствор наносится пульверизатором), содержащий активное вещество, которое абсорбируется на твердой поверхности. В результате, стойкость к износу инструмента или детали машины увеличивается от 2 до 5 раз. Круг материалов, которые можно обрабатывать эпиламами, очень широк: металлы, абразивы, узлы трения, полимеры, хрупкие неметаллические материалы и так далее. В настоящее время более 600 предприятий России применяет эпиламирование в производстве.
Финишное плазменное упрочнение (ФПУ) применяется для изготовления инструмента с особыми свойствами поверхности: стойкостью к износу, коррозии, фреттинг-коррозии и высоким температурам, а также – антифрикционностью и антисхватыванием. На поверхности основы образуется диэлектрическое пленочное покрытие, обладающее низким коэффициентом теплопроводности, химически инертное, с низкой топографией поверхности. Плазменное упрочнение проводится при атмосферном давлении: между плазмотроном и изделием проходит разряд. К дуге подается аргон в качестве плазмообразующего газа, а материалом для покрытия, которое появляется в результате плазмохимических реакций, служит жидкий двухкомпонентный препарат СЕТОЛ. Преимуществом метода являются низкие температуры процесса: заготовка нагревается всего на 100-120 °С, что позволяет обрабатывать инструментальные стали с низкой температурой отпуска. А свойства покрытия из оксикарбонитрида кремния по микротвёрдости приближаются к алмазоподобным покрытиям, характеризуются высокой адгезионной прочностью и низким коэффициентом трения.
Научно-производственная фирма «Плазмацентр» ведет исследования и проектирование в области производства инструмента и технологической оснастки с повышенным ресурсом работы. Ее создавали ученые факультета технологий и исследования материалов Санкт-Петербургского государственного политехнического университета, за плечами которых четверть века работы по проблематике нанесения защитных покрытий, упрочнения и сварки. Среди крупнейших заказчиков фирмы «КАМАЗ», ОАО «Ижевский машиностроительный завод», ОАО «УРАЛМАШ», Ракетно-космический завод, ГКНПЦ им. М.В.Хруничева, ОАО «Корпорация «Иркут», и другие. Одна из важнейших разработок компании – Установка для финишного плазменного упрочнения УФПУ-111: предназначена для безвакуумного нанесения износостойкого нанопокрытия на инструмент, технологическую оснастку, детали машин (без изменения шероховатости поверхности, при нагреве изделия не более 100°С). В составе установки: плазмотрон с плазмохимическим генератором, блок аппаратуры с жидкостным дозатором, прибор контроля нанесения покрытия, источник питания, передвижной и настольный манипуляторы. Потребляемая мощность – не более 5 кВА, номинальный ток – 100 А, номинальное рабочее напряжение – не более 40 В.
Установка UR-121, разработанная в компании «ПЭЛМ» – компактна и проста в использовании, предназначена для нанесения легирующих покрытий на режущий инструмент. Больше подходит для мастерских и лабораторий. Обработка инструмента занимает несколько минут. Установка включает генератор, ручной электромагнитный вибратор, контактную пластину, соединительные провода и комплект электродов. Потребляет 120 W, при 220 V. Одного электрода достаточно для обработки 800 см2 упрочняемой поверхности при толщине наносимого слоя 20 мкм и глубине диффузионного слоя до 50 мкм. Стоимость установки UR-121 от компании-производителя: 67000 рублей с запасом твердосплавных электродов на два года работы.
Небольшая шведская автомастерская, основанная в 1904 году, в процессе развития специализировалась на нанесении износостойких покрытий. Накопив большой опыт, в 1997 году компания назвалась Ionbond, полностью посвятив себя современным технологиям нанесения покрытий и изготовления оборудования для таких работ. Установки для химического и электрохимического осаждения металлов, вакуумно-плазменные установки компании «Ionbond» экспортируются по всему миру: Европа, Америка, Азия. В частности, внимания заслуживают установки «Bernex BPX» серии CVD: оборудованы дублированными электронными системами диагностики и управления процессом, могут быть применены к широкому спектру составов покрытий, на любой основе.
Современные станки и линии с числовым программным управлением, работающие в непрерывно высоком темпе и экстремальных условиях, нуждаются в деталях, обладающих большим запасом прочности и надежности. Новейшие инструментальные покрытия позволяют изготавливать оборудование, удовлетворяющее самым высоким требованиям.
Источник
Алмазное покрытие и способ его получения
Владельцы патента RU 2544219:
Изобретение относится к области нанотехнологии, а именно к алмазным нанокристаллическим покрытиям и способам его получения с использованием наноалмазов. Алмазное покрытие состоит из подслоя, содержащего наноалмазные частицы с размером от 2 до 30 нм, и нанесенного осаждением из газовой фазы алмазного слоя. Подслой выполнен из композиционного материала, имеющего металлическое или неметаллическое связующее и упомянутые наноалмазные частицы с объемной долей 5-90%. Способ получения алмазного покрытия на подложке включает нанесение подслоя, содержащего наноалмазные частицы с размером от 2 до 30 нм, и нанесение алмазного слоя осаждением из газовой фазы. Упомянутый подслой, содержащий наноалмазные частицы, выполняют из композиционного материала, имеющего металлическое или неметаллическое связующее и наноалмазные частицы с объемной долей 5-90%. Повышается качество покрытия и его адгезия к подложке. 2 н. и 13 з.п. ф-лы, 8 пр.
Изобретение относится к области нанотехнологии, а именно к алмазным нанокристаллическим покрытиям и способам его получения с использованием наноалмазов.
Известны алмазное покрытие и способ его нанесения с использованием кремниевой подложки (2032765 (С1) «Способ нанесения алмазного покрытия из паровой фазы и устройство для его осуществления» (С23С 14/00) Заявка: 4355493/21, 01.04.1988. Опубликовано: 10.04.1995). Однако применение кремниевой подложки не позволяет получить высокое качество покрытия.
Известным техническим решением является алмазное покрытие, состоящее из подслоя, содержащего наноалмазные частицы с размером от 2 до 30 нм, и способ его получения, включающий осаждение алмазного слоя из газовой фазы на содержащий наноалмазы подслой (Н.А. Феоктистов, В.И. Сахаров, И.Т. Серенков и др. Аэрозольное нанесение детонационных наноалмазов в качестве зародышей роста нанокристаллических алмазных пленок и изолированных частиц // Журнал технической физики, 2011, том 81, вып. 5, с. 132-138). Однако концентрация наноалмазов в подслое не высока и их сцепление (адгезия) с подложкой слабое, что не позволяет получать покрытие высокого качества.
Наиболее близким аналогом изобретения (JP 2012161873 А, опублик. 30.08.2012) является способ получения алмазного покрытия на подложке из нержавеющей стали, включающий нанесения слоя, содержащего наноалмазные частицы с размером от 2 до 30 нм и осаждение алмазного слоя из газовой фазы, и алмазное покрытие, выполненное из указанных слоев.
Задачей изобретения является повышение качества покрытия и его адгезии к подложке (если требуется повышенное сцепление с подложкой). Для этого предложено подслой выполнять из композиционного материала с высоким содержанием алмазной фазы, которая может содержать или только наноалмазы, или комбинацию наноалмазов и более крупных алмазных частиц. Наличие связующей компоненты композиционного материала позволит увеличить прочность подслоя, что приведет к повышению качества покрытия.
Для достижения поставленной цели, согласно предлагаемому техническому решению, в алмазном покрытии, состоящем из подслоя, содержащего наноалмазные частицы с размером от 2 до 30 нм, и нанесенного осаждением из газовой фазы алмазного слоя, подслой выполнен из композиционного материала с наноалмазными частицами.
Поставленная задача может достигаться также тем, что в алмазном покрытии наноалмазные частицы имеют объемную долю 5-90%.
Поставленная задача может достигаться также тем, что в алмазном покрытии композиционный материал дополнительно содержит алмазные частицы с размером более 30 нм.
Поставленная задача может достигаться также тем, что в алмазном покрытии суммарная объемная доля наноалмазных частиц и алмазных частиц равна 4-95%, а отношение объемной доли алмазных частиц к объемной доле наноалмазных частиц не превышает 10.
Поставленная задача может достигаться также тем, что в алмазном покрытии композиционный материал содержит еще как минимум одну составляющую из металла из ряда: медь, алюминий, никель, кобальт, золото, серебро, платина, тантал, иттрий, цинк, олово, свинец.
Поставленная задача может достигаться также тем, что в алмазном покрытии композиционный материал содержит еще как минимум одну составляющую из неметаллического материала.
Поставленная задача может достигаться также тем, что в способе получения алмазного покрытия, включающем осаждение алмазного слоя из газовой фазы на содержащий наноалмазы подслой, согласно изобретению подслой изготавливают из композиционного материала, содержащего наноалмазные частицы с объемной долей 5-90%.
Поставленная задача может достигаться также тем, что в способе получения алмазного покрытия при изготовлении подслоя в него добавляют алмазные частицы с размером более 30 нм, при этом суммарная объемная доля наноалмазных частиц и алмазных частиц равна 4-95%, а отношение объемной доли алмазных частиц к наноалмазным частицам не превышает 10.
Поставленная задача может достигаться также тем, что в способе получения алмазного покрытия перед нанесением алмазного слоя подслой из композиционного материала разглаживают вращающимся инструментом при отклонении его оси вращения от перпендикуляра к обрабатываемой поверхности на 0-45°.
Поставленная задача может достигаться также тем, что в способе получения алмазного покрытия скорость вращения вращающегося инструмента превышает 20 тысяч оборотов в минуту.
Поставленная задача может достигаться также тем, что в способе получения алмазного покрытия подслой разглаживают в вакууме.
Поставленная задача может достигаться также тем, что в способе получения алмазного покрытия перед нанесением алмазного покрытия подслой обрабатывают ионным или электронным пучком.
Поставленная задача может достигаться также тем, что в способе получения алмазного покрытия для изготовления композиционного материала для подслоя применяют как минимум одну составляющую из металла из ряда: медь, алюминий, никель, кобальт, золото, серебро, платина, иттрий, цинк, олово, свинец.
Поставленная задача может достигаться также тем, что в способе получения алмазного покрытия композиционный материал для подслоя изготавливают методом механического легирования.
Поставленная задача может достигаться также тем, что в способе получения алмазного покрытия подслой изготавливают методом газодинамического напыления.
Поставленная задача может достигаться также тем, что в способе получения алмазного покрытия подслой изготавливают методом фрикционного плакирования.
В алмазном покрытии, состоящем из подслоя, содержащего наноалмазные частицы с размером от 2 до 30 нм, и нанесенного осаждением из газовой фазы алмазного слоя, согласно изобретению подслой выполнен из композиционного материала с наноалмазным частицами. При этом наноалмазные частицы имеет объемную долю 5-90%, а композиционный материал может дополнительно содержать алмазные частицы с размером более 30 нм. Суммарная объемная доля наноалмазных частиц и алмазных частиц равна 4-95%, а отношение объемной доли алмазных частиц к объемной доле наноалмазных частиц не превышает 10. Композиционный материал может содержать еще как минимум одну составляющую из металла из ряда: медь, алюминий, никель, кобальт, золото, серебро, платина, тантал, иттрий, цинк, олово, свинец. Или композиционный материал может содержать еще как минимум одну составляющую из неметаллического материала.
В способе получения алмазного покрытия, включающем осаждение алмазного слоя из газовой фазы на содержащий наноалмазы подслой, согласно изобретению подслой изготавливают из композиционного материала, содержащего наноалмазные частицы с объемной долей 5-90%. При изготовлении подслоя в него могут добавлять алмазные
частицы, а именно алмазные частицы с размером более 30 нм, при этом суммарная объемная доля наноалмазных частиц и алмазных частиц равна 4-95%, а отношение объемной доли алмазных частиц к объемной доле наноалмазных частиц не превышает 10. В способе получения алмазного покрытия возможно перед нанесением алмазного слоя подслой из композиционного материала разглаживать вращающимся инструментом при отклонении его оси вращения от перпендикуляра к обрабатываемой поверхности на 0-45°. При этом скорость вращения вращающегося инструмента может превышать 20 тысяч оборотов в минуту, а подслой возможно разглаживать в вакууме. В способе получения алмазного покрытия перед нанесением алмазного покрытия подслой возможно обрабатывать ионным или электронным пучком. В способе получения алмазного покрытия возможно для изготовления композиционного материала для подслоя применять как минимум одну составляющую из металла из ряда: медь, алюминий, никель, кобальт, золото, серебро, платина, тантал, иттрий, цинк, олово, свинец. Возможно композиционный материал для подслоя изготавливать методом механического легирования. В способе получения алмазного покрытия подслой возможно изготавливать методом газодинамического напыления или методом фрикционного плакирования.
В алмазном покрытии, состоящем из подслоя, содержащего наноалмазные частицы с размером от 2 до 30 нм, и нанесенного осаждением из газовой фазы алмазного слоя, согласно изобретению подслой выполнен из композиционного материала с наноалмазными частицами. В известном техническом решении подслой, наносимый на подложку, получают осаждением наноалмазных частиц. При этом сцепление наноалмазных частиц с подложкой и между собой в случае контакта является слабым, что не позволяет получить хорошую адгезию осаждаемого покрытия с подложкой. Из-за слабого сцепления наноалмазные частицы в процессе нанесения покрытия (в начальном периоде) могут смещаться со своего места, что снижает качество покрытия. В предлагаемом техническом решении подслой, наносимый на подложку, выполнен из композиционного материала с наноалмазными частицами. В композиционном материале сцепление наноалмазных частиц обеспечивается связующим компонентом композиционного материала, который может быть металлическим и неметаллическим. В этом случае смещение или отрыв наноалмазных частиц практически невозможен, а наличие связующего компонента обеспечивает высокое сцепление композиционного материала с подложкой, что обеспечивает высокое качество покрытия и высокую адгезию покрытия к подложке.
Наноалмазные частицы могут иметь объемную долю 5-90%. При содержании наноалмазов менее 5%(объемных) получить качественное покрытие чрезвычайно трудно,
так как мало центров зародышеобразования. При содержании наноалмазов более 90%(объемных) наличие связующей составляющей композиционного материала практически не заметно, и она практически не оказывает влияние на прочность материала. То есть в этом случае отличия от прототипа практически не заметно и получить качественное покрытие сложно.
Композиционный материал может дополнительно содержать алмазные частицы с размером более 30 нм. В известном техническом решении (прототип) наноалмазы применяются в качестве центров зародышеобразования для выращивания нанокристаллических и микрокристаллических покрытий (пленок) методом осаждения из газовой фазы. То есть для центров зародышеобразования требуется алмазная структура. Для этой цели могут подойти и алмазы с размерами, превышающими размер наноалмазов, то есть более 30 нм, в том числе и микроалмазы с размерами в единицы, десятки и сотни микрометров. Однако применение только одних микроалмазов не позволит получить качественное покрытие, так как расстояние между такими частицами также будет измеряться в микрометрах, то есть большие площади не будут иметь центров зародышеобразования. Комбинация микроалмазов и наноалмазов позволит разместить частицы с алмазной структурой практически по всей площади подложки (и подслоя).
Суммарная объемная доля наноалмазных частиц и алмазных частиц равна 4-95%, а отношение объемной доли алмазных частиц к объемной доле наноалмазных частиц не превышает 10. Получение равномерного распределения частиц большего размера значительно легче, чем малого. Поэтому суммарная объемная доля наноалмазных частиц и алмазных частиц может быть несколько меньше, чем в случае применения только наноалмазов, то есть минимальная величина может составлять 4%. Так как размер алмазных частиц композиционного материала больше размера наноалмазных частиц, то суммарная поверхность алмазных частиц меньше при такой же объемной доле, как у наноалмазов. Поэтому в этом случае для связывания может потребоваться меньшее количество связующего компонента композиционного материала и суммарная объемная доля наноалмазных частиц и алмазных частиц может быть повышена до 95%. Отношение объемной доли алмазных частиц к объемной доле наноалмазных частиц не может превышать 10, в противном случае поверхность подслоя между большими алмазными частицами составляющей не будет заполнена наноалмазными частицами, что приведет к снижению качества покрытия.
Композиционный материал может содержать еще как минимум одну составляющую из металла из ряда: медь, алюминий, никель, кобальт, золото, серебро, платина, тантал, иттрий, цинк, олово, свинец. Хорошие результаты показывает
применение для подложки композиционных материалов с металлической матрицей. В основном для этих целей предлагается применять металлы, не образующие карбиды при контакте матрицы с упрочняющими частицами (наноалмазами). Однако возможно применение металлов, которые образуют карбиды, но для их образования требуются специальные условия. Например, возможно применение алюминия. Несмотря на возможное образование карбидов композиционные материалы с углеродными компонентами широко известны, в том числе и с алмазными упрочняющими частицами. И этот материал при обычных условиях стабилен, алмазная составляющая не деградирует. Хорошие показатели достигаются и при применении меди, никеля, кобальта, золота, серебра, платины, тантала, иттрия, цинка, олова, свинца.
Композиционный материал может содержать еще как минимум одну составляющую из неметаллического материала. Связующим материалом может служить также неметаллический материал: керамика, углеродные материалы, полимеры или их смеси. Основное требование к связующей составляющей — отсутствие химического взаимодействия в обычных условиях, то есть необходимо, чтобы не происходило изменения алмазной структуры.
В способе получения алмазного покрытия, включающем осаждение алмазного слоя из газовой фазы на содержащий наноалмазы подслой, согласно изобретению подслой изготавливают из композиционного материала, содержащего наноалмазные частицы с объемной долей 5-90%. В известном техническом решении подслой, наносимый на подложку, получают осаждением наноалмазных частиц. При этом сцепление наноалмазных частиц с подложкой и между собой в случае контакта является слабым, что не позволяет получить хорошую адгезию осаждаемого покрытия с подложкой. Из-за слабого сцепления наноалмазные частицы в процессе нанесения покрытия (в начальном периоде) могут смещаться со своего места, что снижает качество покрытия. В предлагаемом техническом решении подслой, наносимый на подложку, выполнен из композиционного материала с наноалмазными частицами. В композиционном материале сцепление наноалмазных частиц обеспечивается связующим компонентом композиционного материала, который может быть металлическим и неметаллическим. В этом случае смещение или отрыв наноалмазных частиц практически невозможен, а наличие связующего компонента обеспечивает высокое сцепление композиционного материала с подложкой, что обеспечивает высокое качество покрытия и высокую адгезию покрытия к подложке. Наноалмазные частицы могут иметь объемную долю 5-90%. При содержании наноалмазов менее 5%(объемных) получить качественное покрытие чрезвычайно трудно, так как мало центров зародышеобразования. При содержании
наноалмазов более 90%(объемных) наличие связующей составляющей композиционного материала практически не заметно, и она практически не оказывает влияние на прочность материала. То есть в этом случае отличия от прототипа практически не заметно и получить качественное покрытие сложно.
При изготовлении подслоя в него добавляют алмазные частицы с размером более 30 нм, при этом суммарная объемная доля наноалмазных частиц и алмазных частиц равна 4-95%, а отношение объемной доли алмазных частиц к объемной доле наноалмазных частиц не превышает 10. В известном техническом решении (прототип) наноалмазы применяются в качестве центров зародышеобразования для выращивания нанокристаллических и микрокристаллических покрытий (пленок) методом осаждения из газовой фазы. То есть для центров зародышеобразования требуется алмазная структура. Для этой цели могут подойти и алмазы с размерами, превышающими размер наноалмазов, то есть более 30 нм, в том числе и микроалмазы с размерами в единицы, десятки и сотни микрометров. Однако применение только одних микроалмазов не позволит получить качественное покрытие, так как расстояние между такими частицами также будет измеряться в микрометрах, то есть большие площади не будут иметь центров зародышеобразования. Комбинация микроалмазов и наноалмазов позволит разместить частицы с алмазной структурой практически по всей площади подложки (и подслоя). Получение равномерного распределения частиц большего размера значительно легче, чем малого. Поэтому суммарная объемная доля наноалмазных частиц и алмазных частиц может быть несколько меньше, чем в случае применения только наноалмазов, то есть минимальная величина может составлять 4%. Так как размер частиц второй алмазной составляющей композиционного материала больше размера наноалмазных частиц, то суммарная поверхность алмазных частиц меньше при такой же объемной доле, как у наноалмазов. Поэтому в этом случае для связывания может потребоваться меньшее количество связующего компонента композиционного материала и суммарная объемная доля наноалмазных частиц и алмазных частиц может быть повышена до 95%. Отношение объемной доли алмазных частиц к наноалмазным частицам не может превышать 10, в противном случае поверхность подслоя между большими алмазными частицами не будет заполнена наноалмазными частицами, что приведет к снижению качества покрытия.
Перед нанесением алмазного слоя подслой из композиционного материала разглаживают вращающимся инструментом при отклонении его оси вращения от перпендикуляра к обрабатываемой поверхности на 0-45°. Нанесение подслоя могут наносить различными способами, но практически все такие способы нанесения приводят к появлению шероховатости поверхности, что отрицательно скажется на качестве
алмазного покрытия. Кроме этого, в случае применения крупных алмазных частиц, пространственное расположение этих крупных алмазных частиц является хаотичным, то есть к поверхности подслоя крупные алмазные частицы не повернуты максимально возможной площадью. Разглаживание вращающимся инструментом позволит, во-первых, устранить повышенную шероховатость, а во-вторых, позволит повернуть крупные алмазные частицы таким образом, чтобы увеличить на поверхности подслоя площадь алмазной составляющей.
Скорость вращения вращающегося инструмента может превышать 20 тысяч оборотов в минуту. Известно, что при повышении скорости вращения изменяется физика контакта. В этом случае поверхность имеет меньшую шероховатость и облегчается поворот крупных алмазных частиц. Экспериментально показано, что такой эффект наблюдается при скоростях вращения более 20 тысяч оборотов в минуту.
Подслой могут разглаживать в вакууме. Применение вакуума для разглаживания устраняет возможное окисление поверхности, что повышает качество покрытия, так как устраняет появление окислов на алмазной поверхности. Шероховатость при этом также снижается.
Перед нанесением алмазного покрытия подслой могут обрабатывать ионным или электронным пучком. Обработка ионным или электронным пучком позволяет очистить алмазную поверхность от загрязнений, в том числе от оксидов и металлов, а также пассивирует поверхность металла от окисления и коррозии, что повышает качество наносимого алмазного покрытия. При этом наноалмазные и алмазные частицы, которые находились очень близко от поверхности подслоя до обработки ионным или электронным пучком, после обработки появятся на поверхности, таким образом площадь подслоя с алмазной структурой увеличится.
Для изготовления композиционного материала для подслоя применяют как минимум одну составляющую из металла из ряда: медь, алюминий, никель, кобальт, золото, серебро, платина, тантал, иттрий, цинк, олово, свинец. Хорошие результаты показывает применение для подложки композиционных материалов с металлической матрицей. В основном для этих целей предлагается применять металлы, не образующие карбиды при контакте матрицы с упрочняющими частицами (наноалмазами). Однако возможно применение металлов, которые образуют карбиды, но для их образования требуются специальные условия. Например, возможно применение алюминия. Несмотря на возможное образование карбидов, композиционные материалы с углеродными компонентами широко известны, в том числе и с алмазными упрочняющими частицами. И этот материал при обычных условиях стабилен, алмазные частицы не деградируют.
Хорошие показатели достигаются и при применении меди, никеля, кобальта, золота, серебра, платины, тантала, иттрия, цинка, олова, свинца.
Композиционный материал для подслоя могут изготавливать методом механического легирования. Применение метода механического легирования для получения композиционного материала позволит раздробить агломераты наноалмазов (в исходном состоянии наноалмазные частицы агломерированы, размеры агломератов могут достигать сотен микрометров), что позволит равномерно распределить наноалмазные частицы в матрице, тем самым увеличив алмазные частицы на поверхности подслоя.
Подслой могут изготавливать методом газодинамического напыления. Наносить подслой следует способом, который не приведет к деградации алмазной структуры упрочняющих частиц, при этом необходим высокий уровень сцепления гранул композиционного материала между собой и с основой. Таким методом может являться газодинамическое напыление.
Подслой могут изготавливать методом фрикционного плакирования. Наносить подслой следует способом, который не приведет к деградации алмазной структуры упрочняющих частиц, при этом необходим высокий уровень сцепления гранул композиционного материала между собой и с основой. Таким методом может являться фрикционное плакирование. При этом фрикционное плакирование выравнивает поверхность (нанесение подслоя осуществляется металлическими щетками), что упрощает операцию выравнивания вращающимся инструментом.
Алмазное покрытие, изготовленное методом осаждения из газовой фазы, содержало непосредственно сам алмазный слой толщиной 5 мкм и подслой из композиционного материала «медь+наноалмазы» толщиной 20 мкм. Размер наноалмазов составлял в основной массе 5-6 нм. Содержание наноалмазов в композиционном материале — 35%(объемных). Композиционный материал был получен методом механического легирования и нанесен на основу методом фрикционного плакирования. Алмазный слой полностью покрывал подслой.
Алмазное покрытие, изготовленное методом осаждения из газовой фазы, содержало непосредственно сам алмазный слой толщиной 10 мкм и подслой из композиционного материала «алюминий+наноалмазы+микроалмазы» толщиной 30 мкм. Размер наноалмазов составлял в основной массе 5-6 нм. Содержание суммарной алмазной составляющей в композиционном материале — 60%(объемных), при этом композит содержал 30%(объемных) наноалмазов и 30%(объемных) микроалмазов со средним
размером 0,5 мкм, соотношение между объемной долей наноалмазов и объемной долей второй алмазной составляющей составляло 1. Композиционный материал был получен методом механического легирования и нанесен на основу методом газодинамического напыления. Алмазный слой полностью покрывал подслой.
Алмазное покрытие, изготовленное методом осаждения из газовой фазы, содержало непосредственно сам алмазный слой толщиной 5 мкм и подслой из композиционного материала «никель+наноалмазы+микроалмазы» толщиной 10 мкм. Размер наноалмазов составлял в основной массе 5-6 нм. Размер микроалмазов составлял 0,3-0,4 мкм. Содержание наноалмазов в композиционном материале — 10%(объемных). Содержание микроалмазов — 25%(объемных). Микроалмазов содержалось в 2,5 раза больше, чем наноалмазов. Композиционный материал был получен методом механического легирования и нанесен на основу методом газодинамического напыления. Алмазный слой полностью покрывал подслой.
Алмазное покрытие, изготовленное методом осаждения из газовой фазы, содержало непосредственно сам алмазный слой толщиной 25 мкм и подслой из композиционного материала «керамика на основе оксида алюминия+наноалмазы+микроалмазы» толщиной 100 мкм. Размер наноалмазов составлял в основной массе 5-6 нм, размер микроалмазов составлял 0,4-0,5 мкм. Содержание наноалмазов в композиционном материале — 30%(объемных), содержание микроалмазов -30%(объемных). Композиционный материал был получен обработкой в планетарной мельнице (методом механического легирования) и нанесен на основу методом газодинамического напыления. Алмазное покрытие полностью покрывало подслой.
Способ получения алмазного покрытия был выполнен по следующей схеме. Вначале изготовили композиционный материал «медь+наноалмазы» методом механического легирования. Композиционный материал получили в виде гранул. Содержание наноалмазов было равно 40%(объемных). Размер основной фракции наноалмазных частиц равнялся 5-6 нм, не более 10% составляли частицы размером менее 5 нм (до 2 нм) и более 6 нм (до 30 нм). Механическое легирование осуществляли в течение 7 часов рабочего времени в планетарной мельнице при применении шаров в качестве технологического инструмента. При механическом легировании осуществляли остановку оборудования для охлаждения на 5 мин после каждых 10 мин работы. Полученные механическим легированием гранулы компактировали в объемный материал в виде цилиндров диаметром 40 мм высотой 50 мм. Эти цилиндры из композиционного материала применили для нанесения методом фрикционного плакирования подслоя на основу, которая представляла собой пластину из нержавеющей стали. После нанесения подслоя, содержащего наноалмазные частицы, осуществили осаждение алмазного слоя из газовой фазы. Алмазный слой полностью покрывал подслой.
Способ получения алмазного покрытия был выполнен по следующей схеме. Вначале изготовили композиционный материал «никель+наноалмазы+микроалмазы» методом механического легирования. Композиционный материал получили в виде гранул. Содержание наноалмазов было равно 15%(объемных), содержание микроалмазов — 30%(объемных). Размер основной фракции наноалмазных частиц равнялся 5-6 нм, не более 10% составляли частицы размером менее 5 нм (до 2 нм) и более 6 нм (до 30 нм). Размер основной фракции микроалмазов находился в пределах 0,5-0,7 мкм. Механическое легирование осуществляли в течение 8 часов рабочего времени в планетарной мельнице при применении шаров в качестве технологического инструмента. При механическом легировании осуществляли остановку оборудования для охлаждения на 5 мин после каждых 10 мин работы. Полученные механическим легированием гранулы применили для нанесения подслоя методом газодинамического напыления на основу, которая представляла собой пластину из нержавеющей стали. После нанесения подслоя, содержащего наноалмазные частицы, осуществили разглаживание поверхности нанесенного подслоя из композиционного материала вращающимся инструментом без отклонения его оси вращения от перпендикуляра к обрабатываемой поверхности. После выравнивания поверхности осуществили обработку поверхности ионным пучком в течение 20 мин в условиях вакуума. Затем осуществили осаждение алмазного слоя из газовой фазы на подложку из композиционного материала. Алмазный слой полностью покрывал подслой.
Способ получения алмазного покрытия был выполнен по следующей схеме. Вначале изготовили композиционный материал «медь+наноалмазы (первая алмазная составляющая)+микроалмазы (вторая алмазная составляющая)» методом механического легирования. Композиционный материал получили в виде гранул. Содержание наноалмазов было равно 20%(объемных), содержание микроалмазов — 25%(объемных). Размер основной фракции наноалмазных частиц равнялся 5-6 нм, не более 10% составляли частицы размером менее 5 нм (до 2 нм) и более 6 нм (до 30 нм). Размер основной фракции микроалмазов находился в пределах 0,7-1,0 мкм. Максимальный размер микроалмазных
частиц составлял 1,5 мкм. Механическое легирование осуществляли в течение 8 часов рабочего времени в планетарной мельнице при применении шаров в качестве технологического инструмента. При механическом легировании осуществляли остановку оборудования для охлаждения на 5 мин после каждых 10 мин работы. Полученные механическим легированием гранулы применили для нанесения подслоя методом газодинамического напыления на основу, которая представляла собой пластину из нержавеющей стали. После нанесения подслоя, содержащего наноалмазные частицы, осуществили разглаживание поверхности нанесенного подслоя из композиционного материала вращающимся инструментом с отклонением его оси вращения от перпендикуляра к обрабатываемой поверхности 10°. Скорость вращения составила 30 тыс. оборотов в минуту. После выравнивания поверхности осуществили обработку поверхности электронным пучком в течение 20 мин в условиях вакуума. Затем осуществили осаждение алмазного слоя из газовой фазы на подложку из композиционного материала. Алмазный слой полностью покрывал подслой. Пример 8
Способ получения алмазного покрытия был выполнен по следующей схеме. Вначале изготовили композиционный материал «медь+наноалмазы» методом механического легирования. Композиционный материал получили в виде гранул. Содержание наноалмазов было равно 40%(объемных). Размер основной фракции наноалмазных частиц равнялся 5-6 нм, не более 10% составляли частицы размером менее 5 нм (до 2 нм) и более 6 нм (до 30 нм). Механическое легирование осуществляли в течение 7 часов рабочего времени в планетарной мельнице при применении шаров в качестве технологического инструмента. При механическом легировании осуществляли остановку оборудования для охлаждения на 5 мин после каждых 10 мин работы. Полученные механическим легированием гранулы компактировали в объемный материал в виде цилиндров диаметром 40 мм высотой 50 мм. Эти цилиндры из композиционного материала применили для нанесения методом фрикционного плакирования подслоя на основу, которая представляла собой пластину из латуни Л63. После нанесения подслоя, содержащего наноалмазную составляющую, осуществили осаждение алмазного слоя из газовой фазы. Алмазный слой полностью покрывал подслой.
1. Алмазное покрытие, состоящее из подслоя, содержащего наноалмазные частицы с размером от 2 до 30 нм, и нанесенного осаждением из газовой фазы алмазного слоя, отличающееся тем, что подслой выполнен из композиционного материала, имеющего металлическое или неметаллическое связующее и упомянутые наноалмазные частицы с объемной долей 5-90%.
2. Покрытие по п. 1, отличающееся тем, что упомянутый композиционный материал дополнительно содержит алмазные частицы с размером более 30 нм.
3. Покрытие по п. 2, отличающееся тем, что суммарная объемная доля наноалмазных частиц и алмазных частиц равна 4-95%, а отношение объемной доли алмазных частиц к объемной доле наноалмазных частиц не превышает 10.
4. Покрытие по п. 1, отличающееся тем, что композиционный материал содержит как минимум одну составляющую из металла, выбранного из ряда: медь, алюминий, никель, кобальт, золото, серебро, платина, тантал, иттрий, цинк, олово, свинец.
5. Покрытие по п. 1, отличающееся тем, что композиционный материал содержит как минимум одну составляющую из неметаллического материала.
6. Способ получения алмазного покрытия на подложке, включающий нанесение подслоя, содержащего наноалмазные частицы с размером от 2 до 30 нм, и нанесение алмазного слоя осаждением из газовой фазы, отличающийся тем, что упомянутый подслой, содержащий наноалмазные частицы, выполняют из композиционного материала, имеющего металлическое или неметаллическое связующее и наноалмазные частицы с объемной долей 5-90%.
7. Способ по п. 6, отличающийся тем, что при изготовлении подслоя дополнительно используют алмазные частицы с размером более 30 нм, при этом суммарная объемная доля наноалмазных и алмазных частиц равна 4-95%, а отношение объемной доли алмазных частиц к наноалмазным частицам не превышает 10.
8. Способ по п. 6 или 7, отличающийся тем, что перед нанесением алмазного слоя подслой из композиционного материала разглаживают вращающимся инструментом при отклонении его оси вращения от перпендикуляра к обрабатываемой поверхности на 0-45°.
9. Способ по п. 8, отличающийся тем, что скорость вращения вращающегося инструмента превышает 20 тысяч оборотов в минуту.
10. Способ по п. 8, отличающийся тем, что подслой разглаживают в вакууме.
11. Способ по п. 7, отличающийся тем, что перед нанесением алмазного покрытия подслой обрабатывают ионным или электронным пучком.
12. Способ по п. 1, отличающийся тем, что для изготовления композиционного материала для подслоя используют как минимум одну составляющую из металла, выбранного из ряда: медь, алюминий, никель, кобальт, золото, серебро, платина, тантал, иттрий, цинк, олово, свинец.
13. Способ по п. 6 или 7, или 9, или 10, или 11, или 12, отличающийся тем, что композиционный материал для упомянутого подслоя изготавливают методом механического легирования.
14. Способ по п. 13, отличающийся тем, что упомянутый подслой изготавливают методом газодинамического напыления.
15. Способ по п. 13, отличающийся тем, что упомянутый подслой изготавливают методом фрикционного плакирования.
Источник