Амперметр своими руками стрелочный

Малогабаритный стрелочный амперметр на 5 ампер: очень дёшево и очень сердито

Стрелочные электрические измерительные приборы (вольтметры и амперметры) существуют уже почти 200 лет (в XIX веке они именовались гальванометрами); и до сих пор не собираются сходить с арены.

Казалось бы, приборы с цифровой индикацией должны вытеснить их окончательно и бесповоротно. Ан нет!

У стрелочных приборов есть недостаток: они имеют более низкую точность, чем цифровые; но зато у них есть другие незаменимые преимущества:

  • их показания быстрее воспринимаются наблюдателем (особенно — выход за допустимые пределы), именно поэтому стрелочные индикаторы вряд ли исчезнут из автомобилей;
  • оценка уровня показаний возможна даже «косым» взглядом;
  • на стрелочных приборах лучше заметна тенденция измеряемой величины (рост / снижение);
  • за счет инерционности стрелки снижается мелкое шумовое «дрожание» показаний;
  • стрелочные вольтметры и амперметры не требуют питания (за исключением экстремально-низких или высоких значений измеряемой величины).

А для обеспечения нужной точности никто не запрещает дополнить аналоговую индикацию цифровой. 🙂

Итак, в обзоре будет рассмотрен очень недорогой стрелочный амперметр на 5 Ампер.

Прибор был приобретён на Алиэкспресс здесь. Цена — $2, плюс доставка $1.5 (при одновременном заказе нескольких приборов стоимость доставки, по идее, должна быть, как за один; но я не проверял). Там же можно приобрести амперметры с пределами измерений от 1 до 50 А (для приборов > 15 А может потребоваться внешний шунт).

Надеюсь, обзор будет полезен и с научно-познавательной точки зрения (как это устроено и какие есть проблемы).

Внешний вид, конструкция, внутреннее устройство стрелочного амперметра

Прибор построен по классической схеме и с классическим же внешним видом:

Корпус прибора и его защитное стекло — пластиковые.

На обратной стороне прибора — 4 штыря с резьбой М3.

Два верхних штыря — это контакты для подключения к электрической цепи, в которой надлежит измерить ток. Кстати: производитель забыл обозначить, где плюс, а где — минус (плюс — слева).

Два нижних штыря предназначены для закрепления стрелочного амперметра на какой-либо поверхности (приборной панели и т.п.).

Два винта на передней панели (точнее — два шурупа) удерживают защитное стекло.

Габариты амперметра — 45*45*36 мм, из них высота лицевой панели 9 мм.

Регулировки нуля снаружи прибора не предусмотрено, но она доступна, если снять переднее защитное стекло.

Снимем стекло и посмотрим, что там есть.

Как видите, на лицевой панели указан класс точности 2.5 (т.е. 2.5%). Как покажет тестирование, это — довольно смелое заявление, но не вполне соответствующее действительности.

Положение нуля хорошо настроено производителем, но в случае необходимости можно ноль подстроить.

Магнитная система прибора частично защищена от внешних воздействий стальным экраном цилиндрической формы.

На противоположном от шкалы конце стрелки можно заметить слегка размазанную капельку припоя. Это — не производственный дефект, а необходимая часть конструкции, уравновешивающая стрелку.

Благодаря этому стрелка почти не меняет положения при изменении ориентации амперметра (горизонтальная / вертикальная).

Проверка показала, что изменение положения стрелки тестируемого амперметра при таких поворотах происходит менее, чем на толщину стрелки, т.е. изменением можно пренебречь.

Теперь снимаем с прибора его шкалу и смотрим на ещё одну очень простую, но очень важную деталь прибора — на его шунт:

Шунт здесь представлен не в виде отдельного изделия, а просто в виде изогнутого куска проволоки из спец. сплава с нужным сопротивлением.

Чего здесь не хватает?!

Не хватает какого-либо элемента термокомпенсации. Зачем он нужен и к каким последствиям приводит его отсутствие — разберёмся в следующей главе, где и будет протестирован этот такой простой, но такой хитрый прибор.

Технические испытания стрелочного амперметра 5 А

В принципе, стрелочные амперметры могут тестироваться по очень многим параметрам, но в данном обзоре в глубокие дебри погружаться не будем.

Ограничимся точностью, термостабильностью и влиянием близкого расположения больших масс металла.

Причём, надо сказать, что вопрос с термостабильностью показаний в стрелочных индикаторах не прост.

Катушка, намотанная на рамку, имеет высокий температурный коэффициент сопротивления (ТКС), ибо для меди он высок и составляет около 0.38% на градус (правда, для некоторых других металлов он ещё выше; например, для алюминия составляет 0.43% на градус).

Поэтому в приборе должны быть предусмотрены какие-то меры компенсации, иначе показания будут «гулять» по мере прогрева аппаратуры.

Читайте также:  Замена акпп хонда одиссей своими руками

Причём эта проблема наиболее актуальна именно для амперметров.

В стрелочных вольтметрах внешнее сопротивление подключается не параллельно катушке, а последовательно; и доля сопротивления, вносимого самой катушкой, получается небольшой (зависит от предела измерений и других параметров).

Начнём тесты с точности.

Проверим при трёх значениях тока: 1 А, 3 А, 5 А. Ток задавался с помощью лабораторного блока питания Longwei LW-K3010D (обзор) и мощного резистора 3 Ом, а контролировался мультиметром DT9205A.

Измерения проводились при температуре окружающей среды +8 градусов (неотапливаемая лоджия).

Почему именно там проводились измерения?! При естественном освещении (дневной свет) должны были получиться более качественные фотографии.

Но оказалось, что тест в таких условиях приводит и к неожиданным результатам измерений.

Итак, итоги измерений (поданный ток и ток, измеренный стрелочным амперметром):

Погрешность достигла 8%; т.е. намного выше указанных на самом приборе 2.5%!

В качестве причины такого безобразия под подозрение сразу попала пониженная температура окружающей среды в этом эксперименте.

После чего был проведён эксперимент с повышением температуры прибора до 39 градусов.

Для повышения температуры использовалось высокотехнологичное оборудование: кастрюля с горячей водой; а стрелочный амперметр и датчик термометра располагались на крышке. Для более-менее корректного измерения температуры датчик температуры был расположен вплотную к корпусу амперметра.

Тест проводился при токе 3 Ампера, вот результат:

Для более наглядного сравнения результатов, посмотрите вырезанные и расположенные рядом фотки амперметра при токе 3 А и температурах +8°С и +39°С:

Из этого можно сделать два вывода:

— термокомпенсации в приборе нет никакой: ни явной, ни скрытой;

— показания прибора оптимизированы под температуру окружающей среды около +30°С (по крайней мере, это касается протестированного экземпляра).

В принципе, такая оптимизация имеет право на жизнь: при расположении амперметра на приборной панели на него будет передаваться часть тепла от обслуживаемого аппарата, и показания случайно могут оказаться точными. 🙂

Но в большинстве случаев его показания будут пригодны лишь для качественной, а не количественной оценки величины протекающего тока.

И, наконец, последний и самый простой тест: оценка влияния расположенных вблизи больших масс металла.

Для этого теста использовался ещё один высокотехнологичный прибор: спортивная гантель 10 кг.

При поднесении её шара к стрелочному амперметру его показания не изменились. С этим — всё в порядке. Но данный результат не следует распространять на расположение рядом намагниченных предметов: в этом случае возможно всё, что угодно.

Итоги и выводы

Протестированный стрелочный амперметр никак не может быть признан средством измерения.

Это — «показометр», как сейчас принято именовать приборы подобного уровня.

Показометрами могут быть не только амперметры и вольтметры, но и даже некоторые недорогие цифровые осциллографы (например, DSO150 (обзор).

Тем не менее, это не значит, что ему нельзя найти никакого применения.

Его точность достаточна для контрольных функций, приближенной оценки потребления аппаратуры и её общей исправности.

Пригодность к использованию в этих функциях — несомненный плюс прибора с учётом его цены и отсутствия необходимости в каком-либо обслуживании.

Купить этот амперметр (и другие стрелочные амперметры на 1 А, 10 А и др.) можно здесь.

Источник

Самодельный стрелочный амперметр

Амперметр для самодельного блока питания.

Для того чтобы изготовить шунт, надо рассчитать его сопротивление. Заходим на страницу «Карта сайта», выбираем категорию «Программы», заходим в заметку «Программы» и скачиваем «Программу для работ с проволокой». Так, программа есть. Теперь берем измерительную головку, лучше, если она будет с током полного отклонения стрелки 50 или 100 микроампер. Эти параметры называются чувствительностью измерительной головки. Произведем расчет для головки с током в 50 микроампер. Зададимся измеряемым током, допустим 10А.

1) Замеряем сопротивление прибора (головки), для моей оно равно 1454 Ома.
2) В формулу 1 подставляем все имеющиеся данные: Ток прибора — Iприбора=0, 00005А; Ток измеряемый — Iизмеряемый=10А. Сопротивление прибора Rприбора= 1454 Ома.
3) Определили сопротивление шунта Rш=0,00727 Ом.

Открываем программу. Нажимаем вверху на вторую клавишу для определения длины шунта. Справа из выпадающего списка выбираем материал для шунта. Я для таких амперметров в качестве материала всегда использую светлую луженую жесть от консервных банок из-под сгущенного молока. И так, выбираем сталь.
Ее удельное сопротивление примерно в 10 раз больше чем у меди, поэтому геометрические размеры шунта будут меньше. Замеряем микрометром толщину жестянки, у моей она равна 0,2мм. Выбираем ширину полоски жести, девяти миллиметров для тока в десять ампер я думаю хватит, тем более, что плоский проводник имеет большую площадь охлаждения.

Если будет уж очень сильно греться, то ширину можно увеличить и пересчитать шунт. Определяем площадь сечения нашего шунта S=0,2×9=1,8 квадратных мм. Выбираем величину ввода — «площадь поперечного сечения». Вводим это значение в соответствующее окно. Вводим величину необходимого сопротивления шунта. Нажимаем на «Результат» и получаем длину проводника равной 74 миллиметрам. Берем банку 1 (Фото 1) и вырезаем из ее жести соответствующую полоску. На фото я показал, какие формы можно придавать шунту. Под номером 4 шунт для печатного монтажа, концы полоски припаиваются к печатным площадкам. Вообще я всегда немного увеличиваю длину таких шунтов, что ведет к увеличению их сопротивления и в следствии с этим увеличению падения напряжения на на данном шунте при одном и том же токе. Зато появляется возможность точно отрегулировать показания амперметра с помощью добавочного резистора, включенного последовательно с измерительной головкой. См. фото2.

Читайте также:  Как починить баян своими руками

Конечно, в качестве шунтирующего резистора можно использовать и медный обмоточный провод, но тогда шунт будет очень длинным. Хотя давайте попробуем. Вводим новые данные в соответствующие окна. Смотрим следующий скиншот_2. Получаем шунт в виде проволоки длиной 51см. Не стоит сматывать проволоку в катушку и концентрировать тепло в одном месте. Просто проденьте этот кусок проволоки во

фторопластовую трубочку и используйте его, как монтажный провод к выходной клемме вашего блока питания. Естественно от концов этого шунта пойдут два провода к измерительной головке.

Источник

Шунты для амперметра: подключение, применение и изготовление

Амперметр – прибор, замеряющий силу проходящего в электрической цепи тока, который часто бывает немалым. По закону Ома, чтобы пропустить больший ток, амперметр должен иметь как можно меньшее сопротивление. Решение – включение параллельно прибору шунта, обеспечивающего такое низкое значение сопротивления.

Зачем нужен шунт?

Шунт – это полосковая линия (усиленная дорожка на плате) или отрезок провода с достаточно толстым сечением, низкоомная (менее 1 Ом) катушка или резистор с мощностью от 10 Вт. Он используется, когда, например, амперметр, рассчитанный на ток в 10 А, не может замерить, скажем, 50-амперный ток, потребляемый включёнными в электроцепь источника питания устройствами. На жаргоне электриков это явление называется «на шкале не хватает ампер». А точнее – диапазон замеров по току на этом же амперметре не охватывает такие высокие токи.

Расчёт сопротивления шунта

Кроме закона Ома для участка цепи – её разрыва, в который включён амперметр, – в расчёт берётся и формула Кирхгофа. Общий ток, протекающий в месте включения прибора, равен сумме токов, проходящих через сам амперметр и его шунт.

Сопротивление амперметра в разы больше внешнего шунта. Ток, проходящий по внешнему шунту, в эти же несколько раз больше, чем на самом амперметре.

В случае с цифровым прибором, где вместо измерительной головки используется датчик тока и аналого-цифровой преобразователь, распределение токов, составляющих общий ток цепи, не меняется.

Схема включения устройства

Амперметр включается последовательно в разрыв цепи. Последний может находиться в любом её месте. Сам прибор показывает, сколько ампер в час потребляет эта цепь. Внешний шунт также включается последовательно в цепь, но в тот же самый разрыв, получается, параллельно самому амперметру.

Что можно использовать?

В идеале используют отрезок провода или проволоки из металла или сплава, незначительно меняющего своё электрическое сопротивление при нагреве. А нагреваться шунт будет обязательно – хотя бы до нескольких десятков градусов, так как по нему протекает ток в единицы и десятки ампер. Специалисты рекомендуют использовать сплав манганина. Манганиновая проволока (или лента) считается наиболее устойчивым электротехническим элементом: её температурный коэффициент сопротивления в 200 раз меньше, чем у меди, и в 300 раз ниже по сравнению с железом. Использование медных и стальных шунтов способно нести ощутимую погрешность при значительных токах, вызывающих их нагрев.

Но для приблизительной оценки иногда используют распрямлённую канцелярскую скрепку или отрезок провода.

Если речь идёт о внушительной силе тока от сотен до тысяч ампер – например, при старте двигателя «КамАЗа», где создаётся пусковой ток в 500 и более ампер для раскручивания стартером вала двигателя, – простой шунт здесь попросту расплавится. Необходимо использовать токовые клещи – они являются более мощной версией шунта. Аналогично поступают в электроустановках и распределителях с высоким напряжением, где общий ток потребителей довольно высок.

Что требуется?

Для изготовления шунта, кроме проволоки, проводов, диэлектрика и крепежа, потребуются следующие приборы.

  • Готовый миллиамперметр. Можно использовать и гальванометр – измерительную головку без внутренних шунтов, резисторов и так далее.
  • Лабораторный блок питания, выдающий требуемый ампераж. Можно воспользоваться и автомобильным аккумулятором, в цепь с которым последовательно включена, например, фара на 100/90 Вт на основе лампы накаливания. Если такой фары нет, можно подключить отрезок нихромовой электроспирали или мощный керамический резистор на десятки ватт. Ни в коем случае не подключайте шунт с прибором «накоротко», без нагрузки.
  • При работе с бытовой осветительной сетью – выпрямительный диодный мост (или одиночные высоковольтные диоды) и дополнительный защитный автомат на 16 А, плавкие предохранители на несколько ампер.

Напряжение подаётся только после правильной сборки цепи.

Шунт своими руками

Спирально сматывать проволоку (или эмальпровод) не рекомендуется – индуктивность получившейся катушки уменьшит точность амперметра. Катушечное шунтирование имеет недостаток – гашение скачков тока, особенно в случае дросселированной (с сердечником) катушки. Если отрезок проволоки слишком длинный, расположите его в виде волнистой «змейки».

Читайте также:  Деревянные солдаты урфина джюса своими руками

В качестве диэлектрика подойдёт любой изолятор – от керамического до текстолитового. К тому же скрученный в виде катушки провод может перегреть диэлектрик, не выдерживающий повышенной – более 150 градусов – температуры. А к перегреву устойчивы лишь керамика и закалённое стекло.

  • Сначала вырезается диэлектрическая пластина, в которой сверлятся отверстия под болты с шайбами и гайками. Материал – текстолит, гетинакс, дерево или композитные материалы.
  • Для существенной изоляции тепла проволоки от несущей пластины на болты устанавливаются керамические колечки. После них ставятся шайбы, зажимающие проволоку.
  • Для предотвращения самопроизвольного раскручивания и выпадения проволоки и проводов перед гайками проставляются гроверные шайбы.
  • Наконец, вставляются провода и концы проволоки между шайбами, а гайки затягиваются.

Полученная деталь подключается параллельно амперметру или гальванометру.

Переградуировка прибора

Новую градуировку обновлённого стрелочного амперметра под новый шунт нужно произвести следующим образом.

  1. Снимите переднюю часть корпуса (смотровое окно прибора) вместе со стеклом.
  2. Подключите одну из лампочек известного номинала последовательно с амперметром к батарее или сетевому адаптеру питания. Так, на лампочках накаливания указывается ток в амперах и напряжение в вольтах. Если вы подключаете светодиодную панель или фару, на которой, например, указано напряжение 12 В и мощность в 24 Вт – вашим рабочим током будет 2 А (мощность, делённая на напряжение источника питания).
  3. Отметьте, на какой угол отклонилась стрелка прибора, точкой с числом (в данном случае это 2).
  4. Идеальный вариант – включите параллельно друг с другом одинаковые лампочки или фары, увеличивая их число каждый раз на одну. Так можно «прометить» всю шкалу амперметра. Этот способ хорош для переменного тока – шкала амперметра получается нелинейной за счёт влияния частоты тока и падения части напряжения на диодах. Разметка «на глаз» или с использованием транспортира (или по уже имеющейся «линейке» прибора), как часто делают при постоянном токе, не подойдёт. Лучше перестраховаться и сделать точнее.
  5. Закончив разметку, соберите прибор и проверьте, надёжно ли держится крепление шунта, хорош ли электрический контакт между ним и амперметром. Если габариты амперметра позволяют, шунт часто заливают эпоксидным клеем, а затем получившийся элемент (в виде бруска) приклеивают к задней стенке измерительной головки.

Амперметр с новым шунтом готов к работе. Можно подключить щупы или токовые клещи.

С несколькими шунтами

Из амперметра получится и самодельный килоамперметр. Так, из 100-амперного прибора легко сделать амперметр на 2 кА. Более высокие значения на практике вряд ли понадобятся. Если у вас в наличии имеется прибор с одноамперным диапазоном измерений, сделайте несколько коммутируемых шунтов. Незачем переразмечать шкалу – достаточно подобрать шунты на 5, 10, 50, 100 и более ампер. Они помещаются в один внешний корпус вместе с выходными клеммами (для щупов) и многопозиционным переключателем, рассчитанным на такие значения тока.

Режимы помечаются маркером «x5», «x10» и так далее. Когда режим один, а амперметр переделан из одно- в десятиамперный, то слева от буквы «А» надпишите «x10» меньшим шрифтом.

При изготовлении многорежимного амперметра провода, соединяющие переключатель с шунтами и прибором, должны быть максимально короткими. Излишне длинные провода, подключённые к готовому шунту, имеющему точное сопротивление, и уже проградуированному прибору, приведут к заметной погрешности измерений – они включаются последовательно с шунтом и прибором, имеют своё, пусть и очень малое, сопротивление. Переключатель низкого качества со значительно окисленными контактами приведёт к тому, что прибор попросту начнёт «врать» – его токоведущие части и замыкающий подпружиненный шарик также вносят паразитное сопротивление.

Заводские амперметры проходят тщательную поверку, едва сойдя с конвейера. Недочёты учитываются при выпуске приборостроительным заводом следующей партии амперметров. Амперметры, имеющие значительную погрешность, бракуются и направляются на переработку.

О том, как произвести расчет шунта для амперметра, смотрите далее.

Источник

Оцените статью