Портативный анализатор спектра диапазона 2.4 ГГц. Часть 1. Железо
Miguel A. Vallejo
После посещения некоторых web страниц, на которых рассказывалось об анализаторе спектра ISM диапазона 2.4 ГГц на основе модуля CYWM6935, я попытался создать собственный анализатор, но с некоторыми улучшениями. В тех проектах, что я нашел в сети, использовалась связь с компьютером, либо через параллельный порт, либо через последовательный. Я же хотел сделать анализатор портативным, и решил использовать микроконтроллер и графический ЖК дисплей.
У меня было несколько старых телефонов Nokia, так что я мог использовать пластиковый корпус и встроенный LCD для своего портативного анализатора, но… Сделал ли я так? Давайте посмотрим:
Микроконтроллер: Я выбрал ATMega8 с напряжением питания 3.3 В, поскольку и ЖК модуль, и CYWM6935 питаются напряжением 3.3 В. ATMega8 прекрасно справляется с поставленной задачей, работая даже на низких, внутренних тактовых частотах. Я выбрал частоту 4 МГц, используя внутренний генератор.
ЖКИ: ЖК индикатор взят от сотового телефона Nokia 3410. В нем используется контроллер PCD8544, работать с которым очень легко. Можно найти множество примеров программ для работы с этим контроллером.
Аккумулятор: Эти телефоны использую LiIon или NiMh аккумуляторы, но с технической точки зрения оба типа эквивалентны. Их диапазон напряжений от 4.2 до 3.6 В. Моей первой идеей было использовать стабилизатор на 3.3 В, но я не нашел ни одного подходящего, и просто включил диод 1N4004, между аккумулятором и схемой. После этого, за счет падения 0.6 В на диоде, диапазон напряжений питания снизился до 3.6 … 3.0 В. Поскольку указанные для ЖКИ и модуля CYWM6935 напряжения питания должны находиться в пределах от 2.7 до 3.6 В, все будет работать нормально.
Макет
Собрав макет для тестирования модуля и проверки программ микроконтроллера, я столкнулся с первой проблемой. Я нашел в Интернете, что ЖК дисплеи Nokia 3410 и Nokia 3310 использует один и тот же контроллер PCD8544, и, следовательно, могут управляться одной и той же программой. И да и нет. Набор инструкций у обоих ЖКИ, действительно, одинаковый, но форматы экранов разные. Дисплей от Nokia 3310 имеет разрешение 84 × 48 точек, а от Nokia 3410 – 96 × 65 точек, так что подпрограммы управления дисплеем должны быть переписаны с учетом другого формата.
После исправления подпрограмм, вы будете ожидать, что ЖК дисплей заработает, не так ли? Снова нет. Дисплей от Nokia 3410 имеет видимое разрешение 96 × 65 точек, но реальное разрешение внутри контроллера ЖКИ – 102 × 72 точки, и это вам придется учитывать при написании программы.
Слева: LCD модуль от Nokia 3410 управляемый подпрограммами для Nokia 3310 | Справа: LCD модуль от Nokia 3410 управляемый исправленными подпрограммами, учитывающими реальное разрешение |
Вторая проблема была связана с модулем CYWM6935, для которого очень важно строго соблюсти временные соотношения сигналов и выполнить корректную инициализацию. Когда же, наконец, я все сделал правильно, и анализатолр спектра заработал, я увидел на экране сигнал от беспроводной камеры, работавшей на частоте 2468 МГц.
Прототип показывает сигнал беспроводной камеры на частоте 2468 МГц
После множества экспериментов, я нашел несколько способов отображения спектров на дисплее. Один для отображения быстрых цифровых сигналов (таких как WiFi, Bluetooth, и т.п.), один для отображения аналоговых сигналов (беспроводные камеры, беспроводные телефоны и т.п.) и один для отображения среднего по всему диапазону значения. Для удобного переключения между этими режимами мне понадобилась пара кнопок. И, поскольку устройство работает от аккумуляторов, не лишним был бы вольтметр, показывающий их напряжение на экране. С помощью АЦП микроконтроллера сделать это было несложно. Окончательная схема для анализатора спектра диапазона 2.4 ГГц была готова:
Принципиальная схема портативного анализатора спектра диапазона 2.4 ГГц
Монтаж анализатора
В копусе Nokia 3410 много свободного места для монтажа компонентов, но с одним существенным ограничением: высота печатной платы с компонентами не может быть больше 3.3 мм. Это высота оригинальной печатной платы телефона. При использовании SMD компонентов эта проблема решается легко.
Чтобы плата с деталями вписалась по высоте в 3.3. мм, пришлось вырезать в плате отверстия под DIP корпус микроконтроллера ATMega8 и под две кнопки. Сделав отверстия, сделаны, я склеил вместе плату с пластиковым корпусом ЖКИ, а затем припаял проводами узкие контакты дисплея к контактам платы.
Модуль CYWM6935 выше, чем 3.3 мм, но его можно разместить на месте телефонной антенны, если предварительно отрезать от модуля передающую антенну. Все равно, использоваться она не будет.
Разместив все части анализатора, я соединил их тонким монтажным проводом. Вот окончательный вариант. Не слишком красивый, но полностью функциональный:
Осталось завернуть шесть винтов, и анализатор готов.
Окончание читайте здесь
Источник
Простой спектроанализатор звука
Наверняка вы не раз видели в магнитофонах или музыкальных центрах красивые световые столбики, прыгающие под такт музыки. Называется данное устройство — спектроанализатор звука. Именно об изготовлении такого устройства своими руками я и расскажу в данной статье.
Основой устройства являются микросхемы AN6884 (можно и транзисторы, но их понадобится много и эффект будет хуже, а чувствительность ниже). Вот схема включения микросхемы:
В качестве индикаторов применены светодиодные линейные шкалы или обычные светодиоды. Если использовать линейные шкалы, то печатную плату вряд ли удастся сделать, лучше использовать готовую макетную плату. На одной стороне разместить индикаторы, с другой — всё остальное.
Для первой схемы: вместо пятиразрядной AN6884 можно использовать любые аналогичные индикаторы уровня сигнала с соответствующими им схемами включения. Резистор R подбирается в зависимости от напряжения питания (от 50 Ом, при 7В до 100 Ом, при 12В).
Можно использовать схему с транзисторами. Для второго варианта схемы используются транзисторы типа КТ315 или КТ3102, диоды 1n4148 или КД522. Для регулировки уровня перед фильтром устанавливаются подстроечные резисторы на 100кОм, как на первой схеме. При слабом уровне сигнала придётся использовать предусилитель.
Для каждого столбика необходима одна микросхема (или несколько транзисторов в зависимости от количества светодиодов в столбце) и фильтр для выделения определённой частоты. Количество столбиков может быть любым, только придётся подбирать фильтры для каждого. Примеры фильтров:
Низкочастотный фильтр обычно ставится слева, высокочастотный справа. Вы можете поэкспериментировать с подбором фильтров, изменяя ёмкости конденсаторов и сопротивления. Для низкочастотного фильтра вместо конденсаторов и резисторов можно использовать катушку индуктивности (около 500 витков тонкого провода). Настройка производится регулировкой подстроечных резисторов.
Источник
Анализатор радиочастотного спектра своими руками
Десятиканальный аналоговый спектроанализатор
Автор: Олег Наконечный
Опубликовано 26.11.2015
Создано при помощи КотоРед.
В этой статье я расскажу про анализатор спектра (спектроанализатор) звукового сигнала – устройство, которое из звукового сигнала выделяет отдельные частотные составляющие и отображает их уровни на индикаторе. Все мы могли видеть такую штуку в проигрывателе на компьютере. Да-да, та самая куча полосочек, хаотично (на самом деле нет) дергающихся под музыку.
Этот спектроанализатор разрабатывался мной для встройки в стационарный усилитель звуковой частоты. Имеет он десять каналов выделения определенных частот из звукового спектра (32 Гц; 64 Гц; 125 Гц; 250 Гц; 500 Гц; 1 кГц; 2 кГц; 4 кГц; 8 кГц; 16 кГц), соответственно для каждого канала отводится столбик светодиодов на индикаторе. Частоты, лежащие между двух соседних каналов, подавляются не полностью и немного отображаются в обоих каналах. Также имеются два канала отображения общих уровней сигналов в левом и правом звуковом канале усилителя. Отображаются все уровни на матричном светодиодном индикаторе.
Спектроанализатор построен на операционных усилителях, микросхемах КМОП-логики и дискретных активных и пассивных компонентах. За счет применения десяти отдельных полосовых фильтров и сумматоров было достигнуто хорошее разделение каналов, возможность независимо для каждого канала выбирать резонансную частоту, ширину полосы пропускания и усиление простым подбором резисторов и конденсаторов в соответствующих цепях входного каскада. С помощью цифровых микросхем реализована динамическая индикация, что существенно сокращает число необходимых компонентов в сравнении со статической индикацией, снижает потребляемый ток. Однако и яркость свечения светодиодов снижается пропорционально увеличению количества столбцов в матрице, генератор развертки является источником шума в сигнальном тракте, через светодиоды, хоть и недолго, течет большой ток, так что нужно внимательно подходить к выбору токоограничивающих резисторов и изучать документацию производителя светодиодов.
Для работы спектроанализатора нужен биполярный источник питания с напряжениями +5В и -5В в каждом плече соответственно. Отрицательный источник питает только входной каскад, поэтому от него потребляется сравнительно маленький ток, равный 36,5 миллиамперам. С положительным источником питания дела обстоят иначе: он питает все блоки спектроанализатора и потребляемый от него ток может импульсно изменятся от 48,5 до 675 миллиампер. Чем больше светодиодов в матрице зажжено – тем больший ток потребляется. Чем больше разница в количестве зажженных светодиодов между соседними столбцами – тем круче будут импульсы потребляемого тока. Это обусловлено динамическим типом индикации. При необходимости напряжение каждого источника питания можно повысить (в случае отрицательного источника — понизить) вплоть до 15В. Однако следует принимать во внимание, что сопротивления токогоасящих резисторов прийдется пересчитать и рассеиваямая тепловая можность на каждом резисторе возростет, а примененные мной SMD-резисторы 1206 могут рассеять не больше 0,25 Вт тепла.
Спектроанализатор состоит из трех основных блоков:
- Блок входных усилителей и фильтров;
- Блок управления индикацией;
- Блок матричного светодиодного индикатора.
1. Блок входных усилителей и фильтров.
Схема блока приведена на рисунке:
Состоит он из двенадцати отдельных каналов обработки сигнала: 10 каналов анализатора спектра и 2 канала индикатора уровня сигнала.
Звуковой сигнал от источника сигнала поступает на два входных буфера — DA6.1 и DA6.2. Они развязывают источник сигнала от остальных каскадов, которые сильно нагружали бы его, искажая сигнал. К выходам буферов подключены каналы анализатора спектра, а также амплитудные детекторы индикаторов общего уровня сигнала.
Каналы анализатора спектра имеют идентичную схемотехнику и отличаются лишь номиналами частотозадающих конденсаторов. Отдельный канал состоит из инвертирующего сумматора, полосового фильтра и амплитудного детектора. Для примера ниже приведена схема канала выделения частоты 16 кГц.
Сумматор предназначен для объединения сигналов левого и правого каналов. На его выходе образуется сигнал с амплитудой равной сумме амплитуд сигналов из левого и правого каналов с дополнительной инверсией. Инверсия нужна потому, что следующий после него полосовой фильтр тоже построен по инвертирующей схеме. Для каждого канала анализатора спектра был применен отдельный сумматор, потому что хотелось иметь возможность регулировать усиление отдельно в каждом канале, а делать это в полосовом фильтре не влияя на его частотные характеристики не получится. Номиналы резисторов в сумматоре имеют величину в 100 кОм, что бы при параллельном соединении всех десять каналов их общее входное сопротивление было 10 кОм и несильно нагружало входные буфера.
Полосовой фильтр построен по самой классической схеме, описаний которой много в сети и литературе. Добротность каждого фильтра равна 5, что дало оптимальную ширину полосы пропускания, при которой частоты, лежащие между двух каналов, подавляются не полностью и отображаются немного в обоих каналах. Ширина полосы пропускания конкретного фильтра равна отношению его резонансной частоты к добротности. Усиление фильтра на резонансной частоте равно -1. Резисторы и конденсаторы фильтров требуют точного подбора номиналов. Если этого не сделать отклонение всех параметров фильтра может достигать 20% особенно на фильтрах с низкой резонансной частотой (это можно заметить на видеоролике в конце статьи т.к. мне лень было обмерять кучу планарных конденсаторов :Р ). При расчетах были использованы значения конденсаторов из стандартного ряда, а точные номиналы резисторов приведены в скобках рядом с ближайшим номиналом из ряда Е24.
Амплитудный детектор также собран по классической схеме и в пояснениях особо не нуждается. Построен он на германиевых диодах Д9. Их прямое падение напряжение, в сравнении с кремниевыми диодами, существенно меньше и составляет 0,15 – 0,3 В. Амплитудно-модулированное напряжение, поступающее с выхода фильтра, проходит через прямо включенный диод, где от него отрезается отрицательная составляющая, и подается на конденсатор. Конденсатор за каждый полупериод заряжается до амплитудного значения и разряжается через параллельно включенный резистор. В результате изменение напряжения на нем по форме совпадает с изменением амплитуды, то есть является огибающей амплитудно-модулированного входного сигнала. Изменяя номиналы конденсатора и резистора можно соответственно изменять скорость нарастания столбика и скорость спадания. Конденсатор большой емкости требует больше времени для заряда, соответственно и столбик на индикаторе будет дольше подниматься. А если уменьшить сопротивление резистора, шунтирующего конденсатор, то разряжаться он будет быстрее и индикатор будет быстрее гаснуть.
Все двенадцать сигналов собираются на входах двух аналоговых мультиплексоров — DD3 и DD4. Адресные входы обоих мультиплексоров соединены так, что они работают как один мультиплексор с шестнадцатью входами. В зависимости от управляющего кода, генерируемого схемой управления индикацией, производится выбор одного конкретного канала и его сигнал подается дальше на схему аналого-цифрового преобразователя (АЦП).
Мультиплексоры размещены на плате входного каскада для того, чтобы не тянуть далеко 12 проводников с аналоговым сигналом. Цифровой код управления мультиплексорами более устойчив к помехам и требует меньше проводников для передачи сигнала.
2. Блок управления индикацией.
Второй блок управляет процессом отображения значений амплитуды каждого сигнала на соответствующем месте индикатора. Состоит он из двух основных частей: АЦП в левом нижнем углу и схема развертки — в правом верхнем углу. Схема блока показана на рисунке:
Источник