Антенна фукса своими руками

Антенна фукса своими руками

—>

—> —>

—> —>Мини-чат —>
—> —>

—> —>

—> —>Статистика —>

—>

—> —>Главная » 2019 » Апрель » 2 » Антенна Фукса. Антенна Длинный провод. Согласование верёвки на КВ. Long Wire. Наклонный Луч.

После длительных экспериментов с антенной типа Луч (Длинный провод, Long Wire), решил поделиться своими результатами на страницах сайта.

В сети представлен один из вариантов антенны Фукса:

Элементы в левой части схемы: Cv2 и L2 — ни что иное, как «искусственная земля». Разве что, длину отрезка провода я бы взял несколько больше и сделал индикатор настройки, как в промышленном варианте такого устройства, представленного компанией MFJ. Штука полезная, но достаточно дорогая. Помимо подстроечных элементов (высокодобротный контур с большим кол-вом отводов и КПЕ с достаточным зазором между пластинами) в изделии присутствует и индикатор настройки. На самом деле, я не представляю, как можно настроить систему в резонанс без этого индикатора.

Я попробовал однодиапазонный вариант антенны на 80м. Расчёт длины провода производился по формуле: l=150x(n-0.05)/f, где:

l — искомая длина провода (в моём случае, составила 39м);

n — число полуволн, укладывающихся в длину провода (в моём случае, n=1);

f — рабочая частота в МГц (была выбрана частота 3,65МГц).

В целом, длина провода в пол-волны (1/2 λ ) для подобной антенны выбирается из тех соображений, что можно рассматривать будущую антенну как частный случай полуволнового диполя, но запитанного с одного конца, а не в геометрическом центре. В этом случае, мы имеем максимальное волновое сопротивление (до нескольких килоом). Причём, оно будет тем больше, чем большее кол-во полуволн будет укладываться в выбранной длине провода. Т.е. мы будем вынуждены подключиться не в точке пучности тока (при минимальном волновом сопротивлении) и узла напряжения, а в точке пучности напряжения (при максимальном волновом сопротивлении) и узла тока. Поскольку, волновое сопротивление нашего передатчика будет составлять 50/75Ом, то нам необходимо каким-то образом произвести трансформацию волнового сопротивления провода от нескольких килоом (точное значение, скорее всего, мы никогда не узнаем и измерить на практике не сможем) до стандартных 50/75Ом передатчика. Вторая задача: необходимо будет каким-то образом компенсировать затекающий на оплётку используемого в большинстве случаев соединительного коаксиального кабеля между передатчиком и согласующим устройством, ВЧ-ток, чтобы он в момент передачи не создавал помехи в широком спектре частот окружающим бытовым приборам, не вносил искажения в сигнал, не провоцировал возбуждение выходного каскада, не ощущался бы при прикосновении к корпусу передающей аппаратуры и не собирал дополнительные шумы (коих будет великое множество в условиях многоквартирного дома) в момент приёма. Если отрезок в 1/2 λ имеет на конце максимальное волновое сопротивление, то отрезок в 1/4λ — напротив, имеет минимальное волновое сопротивление. Используя этот факт и подключая его к корпусу передатчика, мы отводим значительную часть затекающей на оплётку ВЧ-энергии по пути наименьшего сопротивления, т.е. в наш четвертьволновой противовес или его функциональный эквивалент. Необходимо помнить, что он будет так же являться излучающим элементом, хоть и в меньшей степени, нежели основное полотно антенны.

Выполнить первую задачу (трансформация сопротивлений) можно с помощью Г-согласования, вторую (борьба с затекающими ВЧ-токами на корпус передатчика) — с помощью искусственной земли с небольшим (в сравнении с длинной волны) отрезком провода в качестве противовеса.

Схема имеет следующий вид:

На этапе экспериментов, искусственную землю я применял самодельную, с противовесом 10м, т.е. около 1/8 длины волны.

Значение индуктивности указано для отрезка провода длиной 10м. Ёмкость КПЕ получилась около 77пФ. При длине противовеса 20м, индуктивность была 11мкГн, ёмкость — 88пФ. Суть этой части схемы — подавить ВЧ-токи, затекающие на шасси передатчика.

Электрический эквивалент цепочки из индуктивности, ёмкости и провода 10м составляет 1/4 длины волны и выполняет роль настраиваемого четвертьволнового противовеса, способного более тонко настроить систему в резонанс с учётом влияния окружающих предметов в конкретных условиях при различной длине провода.

Обратите внимание, я подключил контур к центральной жиле ВЧ-разъёма, а конденсатор и эквивалент противовеса — на шасси. При обратном подключении (как по ссылкам выше) получить результат без реактивность мне так и не удалось. Конечно, лучше, когда статика может стекать непосредственно на заземление (когда оно есть), в моём же случае, придётся заземлять антенну дополнительно по окончании работы в эфире.

Кстати говоря, самый распространённый вариант антенны Фукса с гальванической развязкой от антенны и катушкой связи тоже не дал какого-либо внятного результата на передачу (наблюдались наводки на бытовую аппаратуру при мощности от 10Вт) и, в конечном итоге, я от него отказался.. .

А вот и самое интересное — графики антенны с противовесом 10м, полученные с помощью антенного анализатора АА-330М (картинки кликабельны):

Полоса пропускания антенны без реактивности — около 80кГц.

Ниже по частоте у данной конструкции есть ещё одна область резонанса:

КСВ там выше, но область без реактивности заметно шире.

Что касается изготовления согласования полуволновой верёвки, то немногочисленные элементы должны обладать некоторыми свойствами, а именно: контура — добротностью, ёмкости — достаточным зазором.

Ссылка на I/Q-файлы работы данной антенны на приём. Для прослушивания можно использовать программу HDSDR. В качестве приёмника используется трансивер по схеме UT3MK V3.B.

Обнаружил в сети материал, в котором упоминается данное решение с Г-согласованием (рис.5). Ссылка на статью RU3AX, опубликованную в журнале «Радио» №5 за 2007 год.

Именно в таком варианте, как показано на рис.5 в данной статье, у меня используется согласование куска провода для работы в составе WebSDR 80m (без противовеса и искусственной земли, только на приём).

Хочу поделиться идеей переделки ручного тюнера MFJ-941E в «искусственную землю». Не призываю никого делать из устройства с большей ценой устройство с меньшей ценой, но может оказаться так, что ручной тюнер в данный момент не нужен, а «искусственная земля» как раз будет кстати.

Суть переделки: оставить в цепи только один из КПЕ и переключаемый контур. Для этого достаточно отпаять только один провод от верхнего витка контура, идущего к контакту правого конденсатора (если смотреть на лицевую панель тюнера). Картинки кликабельны.

Далее, корпус тюнера соединяем с корпусом радио, а отрезок провода (а-ля противовеса) вставляем в центральный контакт разъема TRANSMITTER.

Переключатель ANTENNA SELECTOR должен быть в положении TUNED>>COAX1 или COAX2. Настройку в резонанс необходимо проверять по индикатору обратной волны на SWR-метре. Отклонение левой стрелки должно быть максимально возможным. Подстройку производить изменением положения переключателя индуктивности и левого КПЕ. Переключатель 30Вт/300Вт ступенчато изменяет чувствительность прибора.

Измерил индуктивность контура при различных положениях переключателя, результаты такие:

Источник

Записки программиста

Антенна Фукса на диапазоны 10-40 метров

30 сентября 2019

После достаточно успешного опыта с антенной EFHW, я решил попробовать альтернативный вариант запитки диполя с конца. Описанная далее конструкция известна, как антенна Фукса. Названа антенна в честь придумавшего ее в 1927 году австрийского радиолюбителя Josef Fuchs, OE1JF.

Теория

В современном исполнении антенна Фукса выглядит так (источник):

Длина полотна определяет наименьшую частоту, на которой будет работать антенна. Как и EFHW, антенна Фукса является многодиапазонной. Притом, дополнительные диапазоны не обязаны быть гармониками основного диапазона. Антенна будет работать на любых частотах, для которых удастся подобрать подходящие длины противовесов при заданной длине полотна.

L1 и L2 представляют собой трансформатор, где-то от 1:49 до 1:64, как и в антенне EFHW. Собственно, трансформатор занимается тем, что согласует высокое входное сопротивление антенны с волновым сопротивлением 50 Ом коаксиального кабеля. Кроме того, L2 и Cv образуют колебательный контур с резонансной частотой около той, на которой мы собираемся работать в эфире. LC-контур, соединенный параллельно с нагрузкой, коей здесь является полотно антены, образует полосно-пропускающий фильтр. На резонансной частоте контур имеет высокий импеданс. Ток в него не течет и уходит в полотно антенны. По мере удаления от резонансной частоты, импеданс контура падает, и антенна начинает хуже излучать.

Не будет преувеличением сказать, что EFHW и антенна Фукса — в сущности, одна и та же антенна. Отличие заключается в том, что в антенне Фукса за трансформатором находится LC контур, который нужно подстраивать под конкретную частоту. В EFHW такого контура нет, поэтому антенна «одинаково плохо» работает сразу на всех диапазонах. В связи со сходством антенн, не удивительно, что антенну Фукса иногда называют антенной EFHW.

При изготовлении антенны Фукса я опирался на замечательную статью End Fed Half Wave Antenna Coupler (EFHW) британского радиолюбителя John, MØUKD. Того же, у кого ранее я подсмотрел идею модификации тюнера MFJ-971.

Чтобы покрыть как можно больше КВ-диапазонов, используя единственный КПЕ, John использовал трансформатор на воздушном сердечнике. При этом не составляет труда получить значение L2 около 1.6 мкГн, которое в сочетании с КПЕ на 15-350 пФ покроет от 40 до 10 метров:

При использовании ферритового кольца индуктивность L2 очень быстро растет с числом витков. Поэтому невозможно получить одновременно трансформатор 1:49-1:64 и L2, подходящее сразу для семи КВ диапазонов. Минус использования воздушного сердечника — считается, что трансформатор на ферритовом кольце эффективнее.

Практика

Как это часто бывает, действовать приходится исходя из доступных материалов. Поэтому мой вариант антенны Фукса вышел несколько отличным от антенны в исполнении MØUKD.

Трансформатор было решено делать из эмалированного провода толщиной 1.5 мм, оставшегося у меня после изготовления самодельного антенного тюнера. Я собирался использовать два витка в первичной обмотке трансформатора, как это сделал MØUKD. Значит, для получения трансформатора 1:64 на вторичной обмотке нужно sqrt(64)*2 = 16 витков. При этом требуется получить 1.6 мкГн. Спрашивается, какой должен быть диаметр катушки? Мой любимый онлайн-калькулятор coil32.ru, который еще ни разу меня не обманывал, рекомендует каркас с диаметром 13 мм. Диаметр первичной обмотки должен быть чуть больше, чтобы катушки легко вставлялись одна в другую. Для первичной обмотки я использовал диаметр 20 мм.

КПЕ был использован такой же, что и в самодельном антенном тюнере. Дело в том, что я предусмотрительно заказал один запасной КПЕ. Измеренная емкость последнего составила от 26.6 пФ до 332.5 пФ. Очень плохо, потому что с такой емкостью на 12 и 10 метров (24.89-24.99 МГц и 28.0-29.7 МГц соответственно) мы не попадаем:

Как исправить ситуацию? Можно добавить переключатель, соединяющий последовательно с нашим КПЕ конденсатор фиксированного номинала, и тем самым понижая общую емкость. В итоге схема получилась следующей:

Здесь приведены идеальные номиналы компонентов. В реальности их нужно подбирать, поскольку в схеме обязательно будет паразитная емкость. Емкость C1, как уже было отмечено, изменяется от 26.6 пФ до 332.5 пФ. Но с проводами и переключателем общая емкость изменяется от 33 пФ до 359 пФ. Подобранный номинал C2 у меня составил 18 пФ. При его последовательном включении с С1 измеренная общая емкость меняется от 17 пФ до 26 пФ. Только С2 довольно быстро пробило, при условии, что он был на 3 кВ. В итоге C2 был заменен на два последовательно соединенных конденсатора номиналами 33 пФ, каждый на 3 кВ. Их суммарная емкость составила 16.2 пФ. Эти конденсаторы пока держатся.

Fun fact! Попытки добавить в антенну диапазон 80 метров путем параллельного соединения с C1 конденсатора на 1000 пФ и использованием полотна длиной 40 метров обречены на провал (проверено!). LC-контур на этом диапазоне будет иметь слишком высокую добротность (большое Q), и следовательно практически нулевую полосу. Это легко проверить, воспользовавшись SPICE-симуляцией. Заинтересованные читатели могут считать это своим домашним заданием.

Описанное выше хозяйство было упаковано таким образом:

Из подходящих корпусов в запасах был найден лишь небольшой (115 x 90 x 55 мм) пластиковый корпус, когда-то давно купленный на eBay. Для фиксации L1 и L2 внутри корпуса я не придумал ничего лучше, чем залить их эпоксидным клеем. КПЕ немного не помещался. Опять-таки, я не придумал ничего лучше, чем сделать квадратное отверстие в одной из стенок корпуса, вкорячить КПЕ, а затем залить щели эпоксидкой. Вышло не так уж и плохо. Прочие компоненты — это разъем SO-239, переключатель, два конденсатора фиксированной емкости, пара «банановых» разъемов, и немного проводов, какие подвернулись по руку.

Антенна была протестирована с тем же полотом длиной 1940 см из «полевки», что ранее использовалось в EFHW. Как и в прошлой раз, антенна была развернута в форме inverted-V на телескопической удочке высотой 10 метров.

Графики КСВ получились следующие:

Графики для WARC-диапазонов 30, 17 и 12 метров не привожу. Эти диапазоны узкополосные, и на них все хорошо. Питать антенну можно как напрямую от трансивера коротким кабелем RG58, так и через балун 1:1 кабелем произвольной длины. Настраивается и так и так.

Типичные результаты при питании напрямую от трансивера без балуна:

  • 40 метров — использовался противовес длиной 2 метра. Полоса антенны по уровню КСВ ≤ 2 составила 130 кГц;
  • 30 метров — противовес длиной 1 метр. КСВ на всем диапазоне не более 1.5;
  • 20 метров — противовес длиной 0.5 метра. Полоса 260 кГц по уровню КСВ ≤ 2, на всем диапазоне КСВ не превышает 2.5;
  • 17 метров — длина противовеса 0.5 метра. КСВ на всем диапазоне от 1.2 до 1.4;
  • 15 метров — без противовеса, достаточно проводов внутри корпуса. КСВ на диапазоне не более 1.7;
  • 12 метров — с последовательно соединенным конденсатором, без противовеса. КСВ на диапазоне не более 1.3;
  • 10 метров — с последовательно соединенным конденсатором, без противовеса. Полоса 720 кГц с КСВ от 1.5 до 2. На всем диапазоне КСВ не больше 3;

В качестве противовесов удобно использовать два провода длиной по 1 метру с «крокодилами» на концах. Если соединить провода вместе, получаем противовес длиной 2 метра. Если один провод отсоединить, останется противовес длиной 1 метр. Соединяем его начало и конец в петлю, получаем противовес 0.5 метра.

Тестирование антенны проводилось в SSB и FT8. В каждом из диапазонов удалось провести радиосвязи с хорошими рапортами.

Заключение

Антенна Фукса имеет те же преимущества в плане запитки антенны с конца, что и EFHW. В отличие от EFHW, антенна дает выход на большее число диапазонов. Платить за это приходится ручной перестройкой антенны, а также сужением полосы в диапазонах 20 и 40 метров. Впрочем, последний дефект присущ не любой антенне Фукса, а исключительно использованной мной схеме. Отмечу, что возможность подстройки под конкретные условия (окружающие объекты, точная форма антенны, способ запитки) одновременно является и плюсом антенны.

Есть основания полагать, что антенна Фукса работает несколько эффективнее EFHW. В пользу этого говорят более низкие значения КСВ, показания индикатора напряженности поля, уровень сигнала в RTL-SDR, pskreporter, а также статистика проведенных радиосвязей. Впрочем, ни один из проведенных мной тестов нельзя с абсолютной уверенностью назвать показательным. Диаграмма направленности и поляризация двух антенн могут немного различаться, принимающие станции в pskreporter распределены по миру неравномерно, объем собранных данных слишком мал, чтобы называть это «статистикой», прохождение постоянно меняется, и так далее.

Поэтому я склонен придерживаться пессимистической точки зрения, что антенна Фукса не менее эффективна, чем EFHW. И это утверждение справедливо исключительно в отношении двух имеющихся у меня экземпляров, а не классов антенн в целом.

Источник

Читайте также:  Баба яга сшить куклу своими руками
Оцените статью