- Макет модель Поделка изделие Моделирование конструирование Модели молекул из трубочек и фольги Трубочки коктейльные Фольга
- Как сделать модель молекулы из пластилина?
- Что необходимо?
- Как слепить разные модели?
- Метан
- Этилен
- Метилен
- Пропан
- Аммиак
- Полезные советы
- Сумасшедшая наука: 10 опытов и любопытных приборов своими руками
Макет модель Поделка изделие Моделирование конструирование Модели молекул из трубочек и фольги Трубочки коктейльные Фольга
Модель молекулы С90
Основа сделана из трубочек от ватных палочек, но можно взять любые трубочки.
Секрет в том, что эти трубочки соединены внутри леской, поэтому модели очень прочные.
Фольга нарезается полосками, полоски складываются в два-три раза и наматываются на стыки трубочек.
Шарики из фольги формируются давлением пальцев 🙂
))) Как класно! Я как химик-технолог оценила ваш труд! Хорошее наглядное пособие!
Модели особенно пригодились при рассказе о фуллеренах.
Источник
Как сделать модель молекулы из пластилина?
включайся в дискуссию
Поделись с друзьями
Химия, изложенная скучным научным языком, вряд ли заинтересует школьника. А вот если подключить наглядные пособия, обучение пойдет веселее. Еще интереснее изготовить макет своими руками. В статье расскажем, как с помощью пластилина можно сделать модель молекулы. Для познавательного урока подойдет структура любой молекулы: железа, спирта, углекислого газа. Подробнее остановимся на нескольких вариантах. Модели остальных веществ будут выполняться по тем же правилам: атомы лепим из пластилина, а для структурных связей используем зубочистки или спички.
Что необходимо?
Прежде чем приступать к уроку лепки, а заодно и химии, необходимо подготовить следующие материалы:
- пластилин нескольких оттенков;
- зубочистки или спички;
- доску или клеенку для работы с пластилином;
- формулы молекул, взятые из интернета или учебника химии.
Когда все будет готово, можно приступать к изготовлению молекулярной модели любого вещества.
Как слепить разные модели?
Лучше сразу лепить по схеме модель молекулы конкретного вещества, чем начинать объяснения о микрообъектах абстрактных изделий. Сначала расскажем о структурных связях элементов на примере разных веществ: метана, этана, этилена, метилена.
Для наглядности будем видоизменять каждую изготовленную молекулу, выстраивая из нее схему следующей познавательной модели. Это несложно сделать, так как во всех схемах участвует связь углерода и водорода.
Метан
Сначала возьмем за основу простую молекулу природного газа метана, она имеет формулу СН4. Чтобы изготовить соответствующую модель, скатайте из пластилина синего цвета четыре небольших шарика: они будут представлять водород. Затем подготовьте красный шарик, размером в несколько раз крупнее синих, – углерод. Структурные связи выполняйте спичками, присоединив к углероду 4 водорода. Получилась простейшая модель молекулы метана.
Органическое соединение этана С2Н6 в схематическом варианте выглядит сложнее метана, но конструктивно модель выполняется из тех же пластилиновых деталей и спичек, поэтому изготовить ее не составит труда.
Из скульптурной фигурки метана уберите одну спичку с синим элементом. В результате остается углерод с двумя водородными связями. Для образования этана нам понадобится два таких комплекта. Связав их между собой дополнительной спичкой, мы получим соединение этана.
Этилен
Чтобы составить модель этилена, делаем структуру с двойной связью. Для этого из конструкции этана убираем от каждого красного шара по одной спичке с синими элементами и добавляем еще одну соединительную спичку между углеродными шариками. Вот что у нас получилось.
Метилен
Теперь на примере метилена (СН2) поучимся делать цепочку связей. Для этого скатайте 3 шарика одинаковых размеров: один красный (углерод) и 2 синих (водород).
Составляем молекулу метилена с двойной связью, собирая цепочку по следующей схеме: водород-углерод-водород, то есть синий шар соединяем двумя спичками с красным и снова двумя спичками с синим шаром. Все элементы выстраиваем в одну линию.
С познавательной целью предлагаем собрать еще ряд молекул разных химических веществ.
Пропан
Этот газ относится к соединениям, содержащим 3 атома углерода и 8 атомов водорода (С3Р8). Для пространственной модели нужно изготовить из пластилина 3 крупных красных шарика и 8 мелких синих горошин. В качестве соединительных связей нам понадобится 10 спичек. Сборка модели молекулы пропана происходит следующим способом.
- К одному из красных шаров с помощью спичек крепим 3 синих горошины.
- Конструкцию дублируем, так как нам нужны два одинаковых варианта.
- К оставшемуся третьему красному шару добавляем две синих горошины, закрепленных на спичках.
- Теперь все три части соединяем вместе. В центре должен находиться атом углерода с двумя атомами водорода, а по краям у каждого углерода должно быть по 3 атома водорода.
Тип связей, который отвечает за структуру молекулы пропана, такой же, как и у газов бутана, метана.
Аммиак
Представляет собой неорганическое бинарное соединение азота и водорода (NH3). Аммиак – газ, не имеющий цвета, но легко распознаваемый по характерному запаху. В предыдущих моделях мы использовали для лепки атома водорода синий пластилин, а для углерода – красный. Моделируя молекулу аммиака, также воспользуйтесь синим цветом для трех атомов водорода, то есть слепите 3 синих шарика.
Для азота выберите какой-либо другой цвет, например, желтый. Понадобится один шарик такого оттенка. Теперь с помощью спичек к азоту (желтый шар) присоедините 3 водорода (синие шары). Модель аммиака готова.
Этот галоген широко распространен в окружающем мире. Молекулярное строение газа крайне простое, оно содержит всего два атома (Cl2). Хлор тяжелее воздуха, имеет зеленовато-желтый оттенок и токсичный резкий запах.
Изобразить его молекулы несложно. Нужно вылепить из пластилина два зеленых шара и соединить их одной спичкой. Еще более простой способ – присоединить два шара боками друг к другу, не прибегая к помощи спичек или зубочисток.
Сложное вещество, представленное в природе разными вариантами, например, хлорид натрия (NaCl), сульфат кальция (CaSo4). NaCl еще называют поваренной солью, с ней знаком каждый из нас, так как она является пищевой.
Для изготовления соединения поваренной соли делаем два шара: небольшой зеленый (хлор) и крупный коричневый (натрий). Чтобы они стали единой молекулой, достаточно прижать шары друг к другу, но можно воспользоваться и спичкой, символизирующей соединительные связи.
Полезные советы
Современные родители и без советов знают, как развивать своих детей, но мы все же озвучим несколько рекомендаций.
Если хотите донести до школьника сложную информацию, находите нестандартные пути ее подачи. В нашем случае обучение химии происходит через 3D-моделирование. Полезные моменты заключаются в следующем.
- Дети усваивают новые знания.
- Способ получения информации сопровождается творческим процессом ваяния объемных фигурок. Он увлекает и дает возможность ученику заинтересоваться таким сложным предметом, как химия.
- Работа с пластилином развивает моторику рук, поэтому она полезна для мыслительной деятельности и творческого потенциала.
- Занятия лепкой помогают в становлении таких полезных качеств, как воображение, усидчивость и сосредоточенность.
Начинайте обучение с простых, но реально существующих моделей молекул. Ребенок сразу должен себя почувствовать причастным к настоящей науке.
Предложите сыну или дочери, пользуясь учебником (интернетом), самостоятельно найти формулы молекул, которые вы еще не проходили. Пусть ребенок с помощью найденной схемы и своего воображения изготовит макет без посторонней помощи. Его может заинтересовать, из каких молекул состоит воздух, кислород, вода, золото, алмаз или сладкий сахар.
Делаем модель молекулы воды из пластилина далее.
Источник
Сумасшедшая наука: 10 опытов и любопытных приборов своими руками
Катушка Тесла своими руками. Резонансный трансформатор Тесла — очень эффектное изобретение. Никола Тесла прекрасно понимал, насколько зрелищен прибор, и постоянно его демонстрировал на людях. Как думаете, зачем? Правильно: чтобы получить дополнительное финансирование.
Почувствовать себя великим ученым и поразить своих друзей вы можете, смастерив свою мини-катушку. Вам понадобятся: конденсатор, небольшая лампочка, провод и несколько других нехитрых деталей. Однако помните, что резонансный трансформатор Тесла производит высокое напряжение высокой частоты — ознакомьтесь с правилами технической безопасности, иначе эффект может превратиться в дефект.
Картофельная пушка. Пневматическое оружие, стреляющее картошкой? Легко! Это не особо опасный проект (разве что вы надумаете сделать гигантское и очень мощное картофельное оружие). Картофельная пушка — отличный способ весело провести время для тех, кто любит инженерное дело и мелкое хулиганство. Супер-оружие элементарно в изготовлении — вам понадобятся пустой аэрозольный распылитель и пара других запчастей, которые несложно найти.
Игрушечный автомат повышенной мощности. Помните детские игрушечные автоматы — яркие, с разными функциями, пиф-паф, ой-ой-ой? Единственное, чего не хватало многим мальчишкам, так это чтобы они стреляли немного дальше и немного сильнее. Что ж, это поправимо.
Игрушечные автоматы делают из резины, чтобы они были максимально безопасными. Конечно, производители убедились, что давление в таких пистолетах минимальное и не может причинить никому вреда. Но некоторые умельцы все же нашли способ, как добавить мощности детскому оружию: вам просто нужно избавиться от деталей, замедляющих процесс. От каких и как — рассказывает экспериментатор из видеоролика.
Дрон своими руками. Многие представляют себе дрон исключительно как большой беспилотный летательный аппарат, используемый в ходе военных действий на Ближнем Востоке. Это заблуждение: дроны становятся повседневным явлением, в большинстве случаев они малы, и сделать их в домашних условиях не так и сложно.
Запчасти для «домашнего» дрона легко приобрести, и не надо быть инженером, чтобы собрать его целиком — хотя, конечно, придется повозиться. Среднестатистический дрон, сделанный вручную, состоит из небольшой основной части, нескольких дополнительных частей (можно купить, а можно найти от других устройств) и электронного оборудования для дистанционного управления. Да, особое удовольствие — это оборудовать готовый дрон камерой.
Терменвокс — музыка магнитного поля. Этот загадочный электромузыкальный инструмент интересен не только (и не столько?) музыкантам, но сумасшедшим ученым. Необычный прибор, придуманный советским изобретателем в 1920 году, вы можете собрать дома. Представьте: вы просто двигаете руками (конечно, с томным видом ученого-музыканта), а инструмент издает «потусторонние» звуки!
Научиться виртуозно управлять терменвоксом — дело нелегкое, но результат того стоит. Сенсор, транзистор, динамик, резистор, источник питания, еще пара деталей, и можете приступать! Вот как это выглядит.
Если не уверенно чувствуете себя в английском, посмотрите русскоязычный ролик, как сделать терменвокс из трех радиоприемников.
Дистанционно управляемый робот. Ну кто не мечтал о роботе? Да еще и собственной сборки! Правда, полностью автономный робот потребует серьезных званий и усилий, а вот робота с дистанционным управлением вполне можно создать из подручных материалов. Например, робот на видео сделан из пенопласта, дерева, небольшого мотора и аккумулятора. Этот «питомец» под вашим руководством свободно перемещается по квартире, преодолевая даже неровные поверхности. Немного творчества, и вы сможете придать ему такой внешний вид, какой вам заблагорассудится.
Плазменный шар наверняка привлекал уже ваше внимание. Оказывается, не нужно тратить деньги на его приобретение, а можно набраться уверенности в себе и сделать самому. Да, в домашних условиях он будет небольшим, но все так же одно прикосновение к поверхности будет заставлять его разряжаться красивейшими разноцветными «молниями».
Основные ингредиенты: индукционная катушка, лампа накаливания и конденсатор. Обязательно соблюдайте технику безопасности — эффектный прибор работает под напряжением.
Радио на солнечной батарее — отличный прибор для любителей продолжительных походов. Не выбрасывайте старый радиоприемник: просто присоедините к нему солнечную батарею, и вы станете независимыми от батареек и других источников питания, кроме солнца.
Вот так выглядит радиоприемник с солнечной батареей.
Сегвей сегодня невероятно популярен, но считается дорогостоящей игрушкой. Вы можете изрядно сэкономить, потратив вместо тысячи долларов всего несколько сотен, прибавив к ним собственные силы и время, и смастерить сегвей самостоятельно. Это задача не из легких, но вполне реальная! Интересно, что сегодня сегвеи используются не только как развлечение — в США на них передвигаются почтовые работники, игроки в гольф и, что особенно поражает, опытные операторы «Стэдикам».
Можете познакомиться с подробной почти часовой инструкцией — правда, она на английском языке.
Если сомневаетесь, что все ли вы правильно поняли, ниже инструкция на русском — чтобы составить общее представление.
Неньютоновская жидкость позволяет делать множество забавных экспериментов. Это абсолютно безопасно и увлекательно. Неньютоновская жидкость — жидкость, вязкость которой зависит от характера внешнего воздействия. Ее можно сделать, смешав воду с крахмалом (один к двум). Думаете, это легко? Не тут-то было. «Фокусы» неньютоновской жидкости начинаются уже в процессе ее создания. Дальше — больше.
Если набрать ее в пригоршню, она будет похожа на монтажную пену. Если начать подбрасывать — будет двигаться как живая. Расслабьте руку — и она начнет растекаться. Сожмите в кулак — станет твердой. Она «танцует», если поднести ее к мощным колонкам, но и вы на ней вполне можете станцевать, если размешаете достаточное для этого количество. В общем, лучше один раз увидеть!
Источник