- Атомная батарейка в современном мире
- Принцип работы атомной батарейки
- Опасны ли ядерные батарейки?
- Плюсы ядерной батарейки
- Минусы ядреной батарейки
- Ядерная батарейка для смартфона
- Где используются ядерные батарейки?
- Ядерная батарейка на никеле 63 и ее характеристики
- Состав ядерной батарейки
- Ядерная батарейка на углероде 14 работающая 100 лет
- Ядерный реактор – дома с нуля
- Какие у нас есть пути создания домашнего ядерного реактора?
Атомная батарейка в современном мире
На данный момент наука прогрессирует и развивается. На сегодняшний день уже изобретена ядерная батарейка. Прослужить такой источник энергии может до 50, а иногда и до 100 лет. Здесь все зависит от размера и какое радиоактивное вещество используется.
В первые заявление об производстве атомной батарейки прозвучало от Росатома. В 2017 году этой компанией на выставке был представлен опытный образец.
Исследователям удалось выполнить оптимизацию слоев ядерной батарейки, которая для выработки электричества использует бета распад изотопа никеля 63.
1 грамм такого вещества содержит 3300 милливатт часов.
Принцип работы атомной батарейки
Получение энергии основывается на химической реакции с использованием разных типов изотопов. Вовремя бета распада создается электрический потенциал. А это дает ток.
Опасны ли ядерные батарейки?
Разработчики утверждают, что подобные элементы питания для обычных граждан являются полностью безопасными. А все потому что конструкция корпуса выполнена добротно.
Известно, что бета излучение вредит организму. Но в созданной ядерной батарейке оно мягкое и будет поглощаться внутри энергетического элемента.
На данный момент специалисты выделяют несколько отраслей в которых планируется использовать ядерную батарейку «Россия А123»:
- Медицина.
- Космическая отрасль.
- Промышленность.
- Транспорт.
Так же по мимо этим сферам новые долговечные источники энергии можно использовать и в других.
Плюсы ядерной батарейки
Выделяют ряд положительных качеств:
- Долговечность. Смогут проработать до 100 000 лет.
- Способность переносить критические температуры.
- Маленький размер позволит их сделать портативными и использовать в компактной технике.
Минусы ядреной батарейки
- Сложность производства.
- Присутствует опасность облучения. Особенно при повреждении корпуса.
- Дороговизна. Одна ядерная батарейка может стоить от 500 000 до 4 500 000 рублей.
- Доступны узкому кругу людей.
- Небольшой ассортимент.
Исследованием и разработкой ядерных батарей занимаются не только большие компании, но и обычные студенты. Так в Томске студент разработал свой аккумулятор, на ядерной энергетике, который может проработать без подзарядки порядка 12 лет. Работа изобретения основана на распаде трития. Такая батарейка не меняет своих характеристик с течением времени.
Ядерная батарейка для смартфона
На 2019 год выпускают атомные источники энергии для телефонов. Выглядят они так как показано на картинке ниже.
Напоминают некую микросхему, которая вставляется в специальные разъемы в мобильнике. Такая батарея способна проработать 20 лет. Причем все это время ее не нужно заряжать. Подобное возможно за счет процесса ядерного деления. Правда многих такой источник энергии может испугать. Ведь всем известно, что радиация вредна и разрушает организм. И таскать такой телефон рядом с собой на протяжение суток мало кому понравится.
Но как утверждают ученые такая ядерная батарея полностью безопасна. Так как в качестве активного вещества задействован тритий. Его излучение, появляющееся при распаде, является без вредным. Посмотреть работу трития можно на светящихся в темноте кварцевых часах. Выдерживает батарейка мороз в минус 50 градусов. Так же стабильно функционирует при плюс 150 C 0 . При этом ни каких колебаний в ее работе отмечено не было.
Неплохо под рукой иметь такой аккумулятор хотя бы для того чтобы подзарядить телефон на обычной АКБ.
Напряжение такой батареи колеблется от 0,8 – 2,4 вольт. Так же она генерирует от 50 до 300 нано ампер. И все это происходит на протяжение 20 лет.
Емкость рассчитана следующим образом: C = 0,000001W * 50 лет * 365 дней * 24 часа / 2V = 219mA
На данный момент АКБ оценивается 1 122 доллара. Если перевести на рубли по нынешнему курсу (65,42), то это выйдет 73 400 рублей.
Где используются ядерные батарейки?
Область применения практически такая же, как и у обычных элементов питания. Применяют их в:
- Микроэлектронике.
- Датчиках давления и температуры.
- Имплантантах.
- В качестве повербанков для литиевых элементов.
- Системах идентификации.
- Часах.
- SRAM памяти.
- Для питания процессоров малой мощности, например, FPGA, ASIC.
Это не единственные устройства в будущем их список заметно расширится.
Ядерная батарейка на никеле 63 и ее характеристики
Данный атомный источник энергии, выполненный на 63 изотопе может прослужить до 50 лет. Работает она за счет бета вольтоического эффекта. Он практически похож на фото электрический эффект. В нем электронно дырочные пары в кристаллической решетке полупроводника создаются под действием быстрых электронов или бета частиц. А при фотоэлектрическом эффекте они появляются под воздействием фотонов.
Атомная батарейка на никеле 63 производится за счет процесса облучения в реакторе мишеней из никеля 62. Исследователь Гаврилов утверждает, что на это уходит около 1 года. Нужные мишени уже имеются в Железногорске.
Если сравнивать новые российские ядерные батарейки на никеле 63 с литий-ионными элементами питания, то они будут в 30 раз меньше.
Специалисты утверждают, что эти энергетические источники безопасны для человека так как выделяют слабые бета лучи. К тому же они не выходят наружу, а остаются внутри устройства.
Такой источник питания на данный момент отлично подойдет для медицинских кардиостимуляторов. Но вот о стоимости разработчики не говорят. Но можно подсчитать ее и без них. 1 грамм Ni-63 на данный момент стоит примерно 4000$. От сюда можно сделать вывод что на полноценную батарею потребуется очень много денег.
Состав ядерной батарейки
Никель 63 добывают из алмазов. Но чтобы получить данный изотоп потребовалось создать новую технологию по нарезке прочного алмазного материала.
Вообще ядерная батарея состоит из излучателя и отделенного с помощью специальной пленки коллектора. Когда идет распад радиоактивный элемент выпускает бета излучение. В итоге происходит его положительный заряд. В это время коллектор заряжается отрицательно. После чего появляется разность потенциалов и образуется электрический ток.
По сути наш атомный элемент питания представляет из себя слоистый пирог. Промеж 200-т алмазных полупроводников стоят 200 источников энергии, выполненных из никеля 63. Высота источника энергии составляет около 4 мм. Его вес равен 250 миллиграмм. Маленький размер — это большой плюс для Российской атомной батарейки.
Сложно отыскать нужные габариты. Большая толщина изотопа не даст появившимся в нем электронам выйти. Маленькая толщина не выгодна, так как снижается количество бета распадов в единицу времени. То же самое и с толщиной полупроводника. Лучше всего батарейка функционирует при толщине изотопа около 2-х микрон. А алмазного полупроводника 10 микрон.
Но то что удалось достигнуть ученым на данный момент не является пределом. Выхлоп можно повысить еще минимум в три раза. А это значит, что ядерную батарейку можно сделать в 3-и раза дешевле.
Ядерная батарейка на углероде 14 работающая 100 лет
У данной атомной батарейке по сравнению с другими радиационными источниками энергии имеются следующие преимущества:
- Дешевизна.
- Экологическая чистота.
- Долгий срок работы до 100 лет.
- Низкая токсичность.
- Безопасность.
- Способна работать в экстремальных температурных условиях.
Радио активный изотоп углерод 14 имеет период полураспада 5700 лет. Он абсолютно не токсичен и имеет низкую стоимость.
Активную работу по модернизации ядерной батарейки ведут не только США и Россия, но и другие страны! Исследователи научились наращивать пленку на карбидной подложке. В результате чего подложка подешевела в целых 100 раз. Такая структура устойчива к радиации, а это делает данный энергетический источник безопасным и долговечным. Применяя карбид кремния в ядерные батареи можно добиться ее работы при температуре в 350 градусов Цельсия.
Таким образом ученым удалось создать атомную батарейку своими руками!
Источник
Ядерный реактор – дома с нуля
Некоторое время назад я публиковал статью о самодельных микропроцессорах, сегодня же мы затронем более сложную и щекотливую тему (особенно в свете событий на Фокусиме) – создание ядерного реактора, способного генерировать энергию в домашних условиях. И перед тем как вы начнете волноваться, вспоминая о негативных опытах в прошлом (см. Радиоактивный бойскаут – наковырявший прилично амерция-241 из детекторов дыма) заранее скажу, что все что описано в этой статье – относительно безопасно (по крайней мере не опаснее работы с фтороводородной кислотой дома), но крайне не рекомендуется к повторению. Перед любыми действиями проконсультируйтесь со своим адвокатом — законы разные в разных странах. Много кто уже сидит.
Какие у нас есть пути создания домашнего ядерного реактора?
Термоядерная реакция
Тяжелый водород (дейтрий) относительно несложно получить и в домашних условиях — всего то нужен многостадийный электролиз обычной воды. Но вот с реактором до сих проблемы даже у ученых, и не первый десяток лет (и это не учитывая, что дейтрий — далеко не самое легкое в использовании термоядерное топливо)
Ядерная реакция деления
В простейшем случае — нужен просто природный уран без обогащения и немного воды (хехе, «Просто добавь воды»: вода — и замедлитель, и отражатель нейтронов). Проблема в том, что надо этого добра сотни тонн, и за вами точно придет доктор, даже если вы 0.1 грамма попробуете найти / купить / унести.
Тут в унынии нам остается обратить взоры в небо, и посмотреть на чем летают межпланетные корабли — там просто кусок радиоактивного материала, который за счет естественного распада нагревается, и элементами пельтье получают энергию. (Кстати естественный распад — собственно главная физическая причина всех бед на Фокусиме — после остановки ядерного реактора в первые минуты за счет распада выделяется 7% номинальной мощности, в первые недели —
1%, затем падает до 0.1%. Т.е. от 700МВт реактора в первые недели надо отводить 7МВт тепла, и этот процесс не остановить)
Попробуем подумать в этом направлении: Есть 3 основных вида радиоактивного распада:
Гамма-распад
Источники гамма излучения широко используются в медицине и промышленности, в основном на основе Кобальта-60/Цезия-137 (печально известного по ядерным катастрофам). Проблема в том, что излучение их очень жесткое, крайне опасное, и от него и сантиметром свинца не защититься (см. веселое свечение Вавилова-Черенкова справа — выбитые гамма-квантами электроны, движущиеся в воде со сверхсветовой скоростью излучают энергию в видимом диапазоне). Так что обходим их стороной как можно дальше. Ну и кроме того, за нелегальную сбыт/покупку гамма-источников каждый год садится куча людей
PS. Справедливости ради стоит заметить, что гамма-квант в данных случаях выделяется не непосредственно, а в результате распада одного из дочерних короткоживущих элементов.
Альфа-распад
Источники альфа-излучения активно применяются в детекторах дыма, для облегчения зажигания искры, в некоторых радиолампах. Один из наиболее известных — упомянутый в начале Америций-241. От альфа-излучения легко защититься даже листком бумаги, но с ними другая опасность: они чрезвычайно опасны если их вдохнуть/проглотить. См. миф об отравлении Кровавой Гэбней Литвиненко. Кроме того, наковырять количества больше микрограммов нереально, потому о термоэлектрических генераторах придется забыть. А жаль — ведь на основе альфа-распада работают наиболее эффективные генераторы энергии. Самый лучший — Плутоний-238 (Не путать с 239) — отдает 0.5 Ватта тепла на 1 грамм массы, полураспад 87 лет (цена — 1 мегабакс за кило).
Бета-распад
Источники мягкого бета-излучения (в сущности, электроны/позитроны) умеренно хорошо экранируются, и обладают чертовски полезным качеством: при попадании электрона в люминофор можно вызвать его свечение. Ну и как побочный эффект — в большинстве стран мира «безопасные» бета-излучатели достаточно легальны. Чем и пользуются изготовители всяких светящихся брелков, как на первой фотографии. Пожалуй, на основе бэта-распада мы и будем строить свой ядерный реактор.
Основа нашего реактора — капсула с тритием, с небезызвестного сайта DealExtreme — www.dealextreme.com/p/mini-tritium-glowring-keychain-10-year-green-glow-6830. 9.7$. Формально радиоактивные материалы так просто почтой слать нельзя, но DealExtreme про это видимо не знает.
О безопасности
Мягкое бета-излучение за пределы капсулы выйти не может, гелий не радиоактивен. Проблема может быть лишь в случае повреждения капсулы. Если тритий вдохнуть — то заражение будет минимальным, т.к. водород напрямую организмом не усваивается. Но если он сгорит, то вода может стать частью клеток, и тогда вы получите всё облучение, которое может только выжать этот микроскопический кусочек трития. Так что, не ломайте, не сжигайте и не вдыхайте то что получилось.
Итак, Тритий — сверхтяжелый водород, период полураспада 12.32 года. На выходе имеем гелий и очень «мягкие» электроны — 6.5кЭв (+антинейтрино, для ценителей). Энергию будем собирать солнечной батареей, подавать на вход Step-Up стабилизатора MCP1640 — работает до десятых вольта на входе, на выходе — ионистор на 1 Фарад и 5В. В нашем случае нагрузкой будет красный светодиод.
Для того, чтобы собрать как можно больше света, нашу капсулу с тритием помещаем в отражатель из фольги.
Для фокусировки используем 2 линзы по 10 диоптрий, видна солнечная батарея до приклеивания, капсула не установлена.
Подключаем, выключаем свет, ждем минуту для первоначального заряда ионистора, и вот результат:
Первая электроэнергия, произведенная ядерным реактором, созданным в домашних условиях 🙂
Халява?
О нет 🙂 В среднем реактор выдает мощность около 7 милливатт (а через 12.32 года будет 3.5 ), и хоть для светодиода этого достаточно, ноутбук от него не зарядить ) Но с другой стороны, десяток таких модулей вполне сможет держать сотовый телефон в режиме ожидания пару десятков лет 🙂 Правда цена… Капсула стоит 9.7$, солнечная батарея 5$, линзы 13.8$*2 — уже 42$ за модуль. А за десяток придется отдать 420$… С другой стороны — на сайте есть капсулы побольше — но за 35.
Источник