- Самодельные аттенюаторы
- Разнообразие аттенюаторов
- АТТЕНЮАТОР С КОММУТАЦИЕЙ
- ЛЕСТНИЧНЫЙ АТТЕНЮАТОР
- КОМПЕНСИРОВАННЫЙ АТТЕНЮАТОР
- Аттенюаторы с П и Т-образными ячейками
- Аттенюаторы на диодах
- Аттенюаторы на PIN-диодах BAR-60 и BAR-61
- АТТЕНЮАТОР С ПОЛЕВЫМИ ТРАНЗИСТОРАМИ
- ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
- П О П У Л Я Р Н О Е:
- Ваш комментарий
- — НАВИГАТОР —
- ПОИСК от GOOGLE:
- Архивы статей
- Страницы
- Прочее
- Архивы
- Подписка RSS
- Коротко о сайте:
- САМОДЕЛЬНЫЙ ЩУП ДЛЯ ОСЦИЛЛОГРАФА
- Подбор провода
- Принципиальные схемы щупов
- Немного обещанной теории
- Щуп № 2
Самодельные аттенюаторы
Аттенюа́тор — это устройство, предназначенное для ослабления электрических или электромагнитных колебаний.
Его можно использовать как средство измерения для плавного, ступенчатого или фиксированного ослабления сигнала.
Разнообразие аттенюаторов
АТТЕНЮАТОР С КОММУТАЦИЕЙ
В любой точке выхода такой модели аттенюатора внутреннее сопротивление равно сопротивлению нагрузки RL. Номиналы элементов, указанные на схеме, соответствуют аттенюации в соотношении А = 10 и RL = 50 Ом.
W. Sorokine, Radio-Consiwcteur et Depanneur, Paris, octobre 1968, p. 253
ЛЕСТНИЧНЫЙ АТТЕНЮАТОР
Восемь двойных переключателей этого устройства позволяют осуществлять комбинации ослабления до 81 дБ. Входные импедансы входа и выхода остаются постоянными, равными 50 Ом.
H.-P. Rust, Funkamateur, Berlin, No. 7/97, p. 802
КОМПЕНСИРОВАННЫЙ АТТЕНЮАТОР
Отношение аттенюации, возможное при использовании устройства, показанного на схеме: (R2 + R3) / (R1 + R2 + R3) и R3 /(R1 + R2 + R3).
Оно должно быть таким же для ёмкостных сопротивлений соответствующих конденсаторов. Конденсатор С1 можно заменить ёмкостью между контактами коммутатора, если конденсаторы С2, С3 переменные.
В случае применения этой схемы в осциллографе подстройка производится до получения оптимальной формы прямоугольного сигнала.
Аттенюаторы с П и Т-образными ячейками
W. Sorokine, Radio-Consiwcteur et Depanneur, Paris, octobre 1968, p. 253
Входные и выходные импедансы аттенюатора могут быть разными. Значение А (фактор аттенюации по мощности) должно быть достаточно высоким. В противном случае можно получить отрицательные результаты.
Аттенюаторы на диодах
Данное устройство может работать за пределами -100Дб даже с напряжением в несколько вольт на входе при условии, что постоянный ток в первой паре диодов больше переменного тока, вызванного приложенным сигналом. На повышенных частотах может появиться необходимость компенсировать входную ёмкость транзистора. Напряжение на выводах диодов изменяется примерно так же, как логарифм фактора атенюации.
Аттенюаторы на PIN-диодах BAR-60 и BAR-61
Эти устройства могут быть использованы для работы на частоте от 10 МГц и выше. При частоте 100 МГц сопротивление проводимости уменьшается с 2,8 кОм для прямого тока 10 мкА до 7 Ом для 10 мА. Присоединение в случае модуля BAR 61 (см. рис.) транзистора n-р-n позволяет получить повышенные прямые токи через диоды.
АТТЕНЮАТОР С ПОЛЕВЫМИ ТРАНЗИСТОРАМИ
При наличии на затворе напряжений, отрицательных по отношению к источникам, аттенюатор может ослаблять сигнал до 60 и даже до 70 дБ, если пропустить ток 1 мА в цепь затвора. Входная амплитуда может достигать нескольких вольт при условии, что аттенюация минимальна.
Источник: ВПР, 400 новых радиоэлектронных схем, Герман Шрайбер.
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
Простой усилитель, всего на одном транзисторе можно сделать для усиления слабого ВЧ сигнала для радиоприёмника, телевизора или радиостанции.
В статье, ниже представлены две схемы простых усилителей. Ч ем покупать в магазине, дешевле самому собрать усилитель, с характеристиками порой не хуже, чем магазинный .
Схема данного индикатора способна улавливать приближение человека или животного на расстоянии до 0,5 м, а также его можно использовать в качестве охранного устройства, определения действующей скрытой проводки или просто для развлечения.
Принцип его работы – увеличение наводки переменного напряжения в антенне при приближении к ней объекта с последующей индикацией, с помощью мигающего светодиода.
Хорошим и нужным в хозяйстве мастера будет устройство, получающее высокотемпературное пламя (около 2000° С) из нескольких литров воды!
В этом Вы можете убедиться, ознакомившись с описанием устройства разработанного мною электролизера.
Предлагается очень простая конструкция, в которой нет баллонов, редукторов, вентилей и сложной горелки.
Ваш комментарий
— НАВИГАТОР —
ПОИСК от GOOGLE:
Архивы статей
Страницы
Прочее
Архивы
Мы в соц.сетях:
Подписка RSS
Подпишитесь на нашу RSS-ленту, чтобы получать новости сайта. Будь всегда на связи!
Коротко о сайте:
Мастер Винтик. Всё своими руками! — это сайт для любителей делать, ремонтировать, творить своими руками! Здесь вы найдёте бесплатные справочники, программы.
На сайте подобраны простые схемы, а так же советы для начинающих самоделкиных. Часть схем и методов ремонта разработана авторами и друзьями сайта. Остальной материал взят из открытых источников и используется исключительно в ознакомительных целях.
Вы любите мастерить, делать поделки? Присылайте фото и описание на наш сайт по эл.почте или через форму.
Программы, схемы и литература — всё БЕСПЛАТНО!
Если сайт понравился, добавьте в избранное (нажмите Ctrl + D), а также можете подписаться на RSS новости и всегда получать новые статьи по ленте.
Если у вас есть вопрос по схеме или поделке? Добро пожаловать на наш ФОРУМ!
Мы всегда рады оказать помощь в настройке схем, ремонте, изготовлении поделок!
Источник
САМОДЕЛЬНЫЙ ЩУП ДЛЯ ОСЦИЛЛОГРАФА
Самодельные осциллографы перестают быть редкостью по мере развития микроконтроллеров. И естественным образом возникает потребность в щупе для него. Желательно со встроенным делителем. Некоторые из возможных конструкций рассмотрены в данной статье.
Щуп собран на отрезке фольгированного стеклотестолита и помещен в металлическую трубку, выполняющую роль экрана. Чтобы не вызывать аварийных ситуаций, когда и если щуп падает на включенное испытуемое устройство, трубка покрыта термоусадкой. Без покрытия заготовка выглядит вот так:
Щуп в разобранном виде:
Конструкции могут быть разными. Просто нужно учитывать некоторые вещи:
- Если выполняете щуп без делителя, т.е. он не содержит в себе больших сопротивлений и переключателей, т.е. элементов подверженных электромагнитным наводкам, то целесообразно экранированный провод щупа протягивать до самой иглы. В этом случае дополнительная экранировка элементов вам не понадобится и щуп можно выполнять из любого диэлектрика. Например использовать один из щупов для тестера.
- Если в щупе выполнен делитель, то когда вы берете его в руки, вы неизбежно будете увеличивать наводки и помехи. Т.е. потребуется экранировка элементов делителя.
В моем случае соединение трубки с экраном (точнее с обратной стороной стеклотестолита) выполнено припаиванием пружинки на тектолит, которая и создает контакт между экраном и платой щупа.
В качестве иглы использовал «Папу» от разъема типа ШР. Но ее можно выполнить и из любого другого подходящего стержня. Разъем от ШР удобен тем, что его «Маму» можно впаять в зажим, который можно будет при необходимости надевать на щуп.
Подбор провода
Отдельного упоминания заслуживает подбор провода. Правильный провод выглядит так:
Миниджек 3,5 мм расположен рядом для масштаба
Правильный провод представляет из себя более-менее обычный экранированный провод, с одним существенным отличием – центральная жила у него одна. Очень тонкая и выполнена из стальной проволоки, а то и проволоки с высоким удельным сопротивлением. Почему именно так поясню немного позже.
Такой провод не сильно распространен и найти его достаточно непросто. В принципе, если вы не работаете с высокими частотами порядка десятка мегагерц, особой разницы, использовав обычный экранированный провод, вы можете и не ощутить. Встречал мнение, что на частотах ниже 3-5 МГц выбор провода не критичен. Ни подтвердить, ни опровергнуть не могу – нет практики на частотах выше 1 МГц. В каких случаях это может сказываться тоже скажу позже.
Самодельные осциллографы нечасто имеют полосу пропускания в несколько мегагерц, поэтому используйте тот провод, который найдете. Просто стремитесь подобрать такой, у которого центральные жилы потоньше и их поменьше. Встречал мнение, что центральная жила должна быть потолще, но это явно из серии «вредных советов». Малое сопротивление проводу осциллографа без надобности. Там токи в наноамперах.
И важно понимать, чем ниже собственная емкость изготовленного щупа, тем лучше. Это связано с тем, что когда вы подключаете щуп к исследуемому устройству, вы тем самым подключаете дополнительную емкость.
Если подключаете напрямую на выход логического элемента либо в ИБП, т.е. к достаточно мощному источнику сигнала, имеющему достаточно малое собственное сопротивление, то все будет отображаться нормально. Но если в цепи есть значительные сопротивления, то емкость щупа будет сильно искажать форму сигнала, т.к. будет заряжаться через это сопротивление. А это означает, что вы уже не будете уверены в достоверности осциллограммы. Т.е. чем ниже собственная емкость щупа, тем шире диапазон возможных применений вашего осциллографа.
Принципиальные схемы щупов
Собственно схема щупа, которую я применил, предельно проста:
Это делитель на 10 для осциллографа с входным сопротивлением 1 мегом. Сопротивление лучше составить из нескольких, соединенных последовательно. Переключатель просто замыкает напрямую добавочное сопротивление. А подстроечный конденсатор позволяет согласовать щуп с конкретным прибором.
Пожалуй вот более правильная схема, которую стоило бы рекомендовать:
Она явно лучше по допустимому напряжению, так как пробивное напряжение резисторов и конденсаторов СМД обычно принимают за 100 вольт. Встречал утверждения, что они выдерживают и 200-250 вольт. Не проверял. Но если вы исследуете достаточно высоковольтные цепи, стоит применить именно такую схему.
Я ее никогда не делал, рекомендаций по настройке (подбору конденсаторов С2, С3, С4) дать не могу.
Немного обещанной теории
Емкость прямо пропорциональна площади проводников и обратно пропорциональна расстоянию между ними. Там еще есть коэффициент, но для нас это не важно сейчас.
Имеем два проводника. Центральная жила и экран провода. Расстояние между ними определяется диаметром провода. Площадь экрана сильно снизить не получится. Да и не надо. Остается снижать ПЛОЩАДЬ ПОВЕРХНОСТИ ЦЕНТРАЛЬНОЙ ЖИЛЫ.
Т.е. снижать ее диаметр насколько это технически целесообразно без потери механической прочности.
Ну а чтобы повысить эту самую прочность при уменьшении диаметра надо выбрать материал попрочнее.
Провод можно представить так:
Распределенная емкость по длине провода. Ну а чем больше будет удельное сопротивление материала центральной жилы, тем меньшее влияние соседние участки (соседние емкости) будут оказывать друг на друга. Поэтому целесообразен провод с высоким удельным сопротивлением. По этой же самой причине нецелесообразно делать провод щупа слишком длинным.
Разъемы рассматривать не буду. Лишь скажу, что оптимальным для осциллографа считаю разъемы BNC. Они чаще всего и применяются. Миниджек, аудиоразъем я бы применять не рекомендовал (хотя сам применяю, в силу того, что не использую осциллограф в цепях со значительными напряжениями). Он опасен. Дернули провод при проведении исследований цепей с хорошим напряжением. Что происходит далее? А далее миниджек, скользя по гнезду, может вызвать замыкание. И даже если в силу разных причин ничего не произошло, на самом миниджеке будет присутствовать это напряжение. А если он упадет к вам на колени? А там открытый центральный контакт и земля рядом.
Лето, жарко, любите работать в трусах? Выбирайте BNC (не реклама). BNC тем и хорош. Его не выдернешь просто так. А даже если и случилось – он закрытый. Ничего опасного произойти не должно, то что в трусах, не пострадает))
Дополнительную информацию можно почерпнуть из цикла статей Входные узлы самодельных осциллографов. Так, теорией поутомлялись, теперь
Щуп № 2
Он хорош тем, что его можно вставить так:
Или вот так, ему безразлично, он свободно крутится.
Устроен он примерно так:
Единственное, что на нем еще будет сделано. Отверстие для выхода провода земли из щупа будет залито каплей термоклея, чтобы сложнее было вырвать его при случайном рывке и провод будет зафиксирован в рукоятке отрезком спички, заточенным под пологий клин.
Чтобы не оборвать и не открутить центральную жилу. Кстати это самый простой способ «лечить» дешевые китайские щупы для тестера, чтобы провод не отламывался от наконечника.
На что стоит обратить внимание: Экран доходит почти до самого наконечника. Не должно быть под пальцами значительного по площади открытого участка центральной жилы, иначе вы будете любоваться наводками с рук на дисплее ослика.
Специально для сайта Радиосхемы — Тришин А.О. Г. Комсомольск-на Амуре. Август 2018 г.
Источник