Автомат день ночь своими руками

Схемы фотореле для управления освещением

Одной из задач, выполняемых при помощи фотодатчиков, является управление освещением. Такие схемы называются фотореле, чаще всего это простое включение освещения в темное время суток. С этой целью радиолюбителями было разработано немало схем, вот некоторые из них.

Наверное, самая простая схема показана на рисунке 1. Количество деталей в ней, невелико, меньше уже не получится, а эффективность, читай чувствительность, достаточно высокая.

Это достигнуто тем, что транзисторы VT1 и VT2 включены по схеме составного транзистора, называемой также схемой Дарлингтона. При таком включении коэффициент усиления равен произведению коэффициентов усиления составляющих транзисторов. Кроме того, такая схема обеспечивает высокий входной импеданс, что позволяет подключать высокоомные источники сигнала, как показанный на схеме фоторезистор PR1.

Рисунок 1. Схема простого фотореле

Работа схемы достаточно проста. Сопротивление фоторезистора PR1 с увеличением освещенности уменьшается до нескольких КОм (темновое сопротивление несколько МОм), что приведет к открыванию транзистора VT1. Его коллекторный ток откроет транзистор VT2, который включит реле K1, которое своим контактом включит нагрузку.

Диод VD1 защищает схему от ЭДС самоиндукции, возникающей в момент выключения реле K1. Таким образом, очень маломощный сигнал фоторезистора преобразуется в сигнал достаточный для включения обмотки реле.

Чувствительность этой простой схемы достаточно высока, иногда просто избыточна. Чтобы ее уменьшить, и регулировать в необходимых пределах можно добавить с схему переменный резистор R1, показанный на схеме пунктиром.

Напряжение питания указано в пределах 5…15В, — зависит от рабочего напряжения реле. Для напряжения 6В подойдут реле РЭС9, РЭС47, а для напряжения 12В РЭС49, РЭС15. При указанных на схеме транзисторах ток обмотки реле не должен превышать 50мА.

Если вместо транзистора VT2 поставить, например, КТ815, то выходной ток может быть больше, что позволит применить более мощные реле. А вообще, чем выше напряжение питания, тем выше и чувствительность фотореле.

Схема фотореле с фотодиодом

Схема этого фотореле показана на рисунке 2.

Рисунок 2. Схема фотореле с фотодиодом

Как и предыдущая, она также содержит минимальное количество деталей, благодаря применению операционного усилителя (ОУ). В данной схеме ОУ включен по схеме компаратора (сравнивающего устройства). Нетрудно видеть, что фотодиод LED1 включен в фотодиодном режиме, — питание подано так, что фотодиод смещен в обратном направлении.

Поэтому, при снижении уровня освещенности сопротивление светодиода Led1 возрастает, что приводит к уменьшению падения напряжения на резисторе R1, а следовательно и на инвертирующем входе компаратора OP1.

Напряжение на неинвертирующем входе ОУ устанавливается при помощи переменного резистора R2, и является пороговым — задает порог срабатывания. Как только напряжение на инвертирующем входе станет меньше, чем пороговое, на выходе компаратора появится высокий уровень напряжения, который откроет транзистор T1, который включит реле K1.

Реле и транзистор в этой схеме можно подобрать, руководствуясь рекомендациями к схеме, показанной на рисунке 6. В качестве компаратора можно использовать ОУ типа К140УД6, К140УД7 или подобные. Источник питания для схемы подойдет любой, можно даже бестрансформаторный, без гальванической развязки от сети. В этом случае при наладке следует быть внимательным, соблюдать правила техники безопасности. Идеальным вариантом следует считать использование для настройки схемы разделительного трансформатора или, как его иногда называют трансформатора безопасности.

Настройка устройства сводится к установке порогового напряжения таким образом, чтобы включение происходило уже при наступлении сумерек. Чтобы не дожидаться этого природного момента, можно в затемненной комнате засвечивать фотодиод лампой накаливания, включенной через тиристорный регулятор мощности. Эта же методика пригодна для настройки и других схем фотореле.

Возможно, что при срабатывании фотореле релюшка будет дребезжать. Избавиться от этого явления можно присоединив параллельно катушке электролитический конденсатор на несколько сотен микрофарад.

Фотореле на микросхеме

Специализированная микросхема КР1182ПМ1 представляет собой фазовый регулятор мощности, то же самое, что обычный тиристорный. Весьма важным и ценным свойством такого регулятора мощности является то, что он включается в схему как двухполюсник, не требуя для себя дополнительного провода питания: просто включил параллельно выключателю и все уже работает! На рисунке 4 показано, как на этой микросхеме можно построить несложное фотореле.

Читайте также:  Держатель плашек для нарезания резьбы своими руками

Рис. 3. Микросхема КР1182ПМ1

Рисунок 4 . Схема фотореле на микросхеме КР1182ПМ1

Управляющие выводы микросхемы 3 и 6. Если между ними подключить просто обычный однополюсный выключатель, то при его замыкании нагрузка будет отключаться! Если его разомкнуть, то нагрузка подключится. Кстати, без дополнительных внешних тиристоров или симистора, и даже без радиатора, микросхема выдерживает нагрузку до 150Вт. Это в случае, если при включении нагрузки нет бросков тока, как у ламп накаливания. Лампу накаливания в таком варианте можно включать мощностью не более 75Вт.

Просто выключатель к этим выводам подключать как бы ни к чему, если только в комплексе с другими деталями. Если не обращать внимания на фототранзистор и электролитический конденсатор, мысленно оставить только переменный резистор R1, то получается просто фазовый регулятор мощности: при перемещении его движка вверх по схеме выводы 3 и 6 замыкаются накоротко, тем самым отключая нагрузку, как упомянутым выше контактом. При перемещении движка вниз по схеме мощность в нагрузке изменяется от 0…100%. Тут все понятно и просто.

Если к этим выводам подключить электролитический конденсатор (считаем, что фототранзистора в схеме пока нет), то получится просто плавное включение нагрузки. Каким образом?

Сопротивление разряженного конденсатора невелико, поэтому поначалу управляющие выводы микросхемы 3 и 6 практически замкнуты накоротко и нагрузка отключена. По мере заряда сопротивление конденсатора возрастает (достаточно вспомнить проверку конденсаторов омметром), напряжение на нем тоже растет, мощность в нагрузке плавно увеличивается. Получается устройство плавного включения нагрузки. Причем мощность в нагрузку будет подана на столько, насколько введен движок переменного резистора R1. При отключении устройства от сети конденсатор разряжается через резистор R1, подготавливая устройство к следующему включению. Если конденсатор разрядиться не успеет, то плавного включения не будет.

Вот теперь и добрались до самого главного, до фотореле. Если теперь к управляющим выводам 3 и 6 подключить фототранзистор, то получится фотореле. Работает оно следующим образом. Днем при высокой освещенности фототранзистор открыт, поэтому сопротивление его участка коллектор – эмиттер невелико, выводы 3 и 6 замкнуты между собой, нагрузка отключена.

При плавном уменьшении освещенности в вечерние часы фототранзистор плавненько будет открываться, постепенно увеличивая мощность в нагрузке, то есть в лампе. Никаких пороговых элементов в этой схеме нет, поэтому лампа будет зажигаться и гаснуть постепенно.

Чтобы фотореле не сработало в тот момент, когда включится своя же лампа, фототранзистор желательно защитить от такой подсветки. Проще всего это сделать с помощью пластиковой трубки.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Источник

Делаем фотореле своими руками

Одним из многочисленных автоматов, в общем смысле слова, является фотореле. Оно визуально незаметно, малофункционально и применяется во многих нишах. Устройство обладает единственной реакцией на внешний фактор наличия или отсутствия света — соединение или разрыв линии, по которой идет ток. Последнее используется как напрямую для отключения или активации потребителей, так и в качестве сигнального импульса. Встретить фотореле можно во многих сферах жизни, от контрольных линий производства или турникетов метро, до их присутствия в роли элементов выключателей освещения различного плана.

Турникеты в метро:

Многие не раз попадали в ситуации, когда в темноте не видно расположения предметов. Причем это мешает не только процессу личного перемещения, но и создает неудобство, когда нужно что-то найти в темноте. Вопрос вполне решаем установкой лампы. Вот только сразу выявляется проблема с ее включением в темноте. Здесь в роли автомата может применятся фотореле, включающее освещение именно в те моменты, когда наступает темнота.

Читайте также:  Делаем одежду для детей своими руками

Упомянутая ниша использования не единственная. На основе реакции датчика на видимое излучение, построены и считающие единицы товара приборы, и охранные устройства. Оба названых типа определяют пересечение луча света объектом. На том же принципе бывают выполнены системы автоматического открытия дверей, ворот или шлагбаумов.

Простота конструкции позволяет легко изготовить комплекс из реагирующей части и фотореле своими руками, о чем и пойдет речь в статье. Будут рассмотрены виды соединения готовых сборок, выпускаемых промышленностью и их схемы, раскрывающие сущность названых частей, от самых элементарных, до использующих в своей основе микроконтроллер.

Схема простого фотореле

Начнем с простого устройства наподобие ночника. Когда светло, он выключен, но чем темнее становится, тем ярче горит лампа. Сразу маленькое напоминание — питание устройства 220 В, так что нужно быть аккуратнее и внимательнее при его сборке и проверке.

Чем меньше освещенность фоторезистора, тем сильнее открыт семисторный ключ Q6004LT. Соответственно, больше тока предоставляется нагрузке, в роли которой выступает маломощная лампа накаливания.

Есть вариант описанной схемы, использующий уже 5 элементов. В ней лампа просто загорается в темноте на максимальную яркость и гаснет в моменты попадания света на фоторезистор.

Простая схема фотореле:

Настройка чувствительности выполняется подбором значения R1. Изменять в какую-либо сторону его нужно в относительно небольших пределах. Мощность резистора выбирается для всех случаев равной 1 Вт. Семистор КУ208Г можно сменить на КУ601Г без потери функциональности конечного устройства, но в любом случае, на названый элемент схемы нужно ставить теплоотвод — при использовании указанной нагрузки, он сильно греется.

Другой несложной конструкцией можно назвать использование фотореле в связке с несколькими транзисторами. Приведенная схема изначально рассчитана на подключение потребителей через линию размыкания электромагнитного реле.

Фоторезистор PR1 с подстроечником R1 выступают в роли делителя напряжения, управляющего состоянием транзистора VT1, который в свою очередь открывает или закрывает VT2. Последний, и производит пропуск тока на реле K1, размыкающее или соединяющее линию питания нагрузки. Диод VD1 шунтирует скачки тока в моменты срабатывания электромагнитного элемента, защищая транзисторы.

Обратите внимание! Указанное устройство питается уже не от сети 220 В, а имеет свой токовый ввод от 5 до 15 В. Что касается функций подстроечника R1 — он нужен для установки чувствительности к потоку света, приводящего к срабатыванию самого устройства.

Повторяемый промышленный вариант

В качестве своеобразного эталона рассмотрим схему фотореле ФР-602 от компании EIK. Большая часть представленных на рынке устройств аналогичного плана конструктивно похожи, отличаясь лишь в мелочах.

Принципиальная схема фотореле вместе с печатной платой:

Как видно, конструкция проста и может быть выполнена в домашних условиях. Элементарная база:

Обозначение на схеме Модель/тип Характеристики Аналоги
С2 Конденсатор 0.7мкф, 400 В
C4 Электролитический конденсатор 100 мкф, 50 В
C5 47 мкф 25 В
R2 Резистор 1.5 МОм, 0.125 Вт
R3 220 Ом, 2 Вт
R4 1 МОм, 0.125 Вт
R5 560 кОм, 0.125 Вт
R6 200 кОм, 0.125 Вт
R7 100 кОм, 0.125 Вт
R8 75 кОм, 0.125 Вт
R9 33 кОм, 0.125 Вт
WL Построечный резистор 2.2 мОм
ZD1 Стабилитрон 1N4749 24 В 3 последовательно соединенных Д814А, или 2 Д814Д
D1-D5 Выпрямительный диод 1N4007
VD1 Выпрямительный диод 1N4148
Q1, Q2 Биполярный транзистор BC857A КТ3107Б
PH Фотоэлемент (фоторезистор) До 110 кОм
Rel Реле SHA-24VDC-S-A (Rel1)

Схема подключения классических фотореле к линии потребления

Все виды выпускаемых промышленностью или сделанных самостоятельно реле, требуют отдельного питания. Соответственно, и два контакта устройства будут предназначены названым целям. Причем встречаются модели фотореле без встроенного преобразователя напряжения, что означает подачу питания к ним не от сети 220 В, а через отдельный понижающий блок. Линий, идущих к потребителям может быть несколько, в зависимости от количества внутренних электромагнитных переключателей. Причем ввод может быть и раздельным для каждого контакта, — объединенным между прочими — или вообще интегрированным с питанием самого фотореле.

Датчик света у большинства моделей встроен в корпус самого устройства, но существуют и раздельные варианты, позволяющие выносить его в сторону от самого аппарата. Последнее нужно для случаев исключения засветки фотоприемника от управляемых ламп, чтобы система не превращалась в стробоскоп. То есть, когда темно — аппарат включает лампы. Становится светло — он их отключает. Опять срабатывает на мрак. И так по кругу.

Читайте также:  Как сделать бороду царя своими руками

Одинарная

Описанная ранее модель ФР-602 и аналогичные ей подключаются к линии следующим образом:

На большое количество потребителей энергии

Для управления мощной нагрузкой, например, при подключении прожектора или многочисленных ламп, лучше использовать промежуточные реле. В роли последних выбираются соответствующие приборы, которые выдерживают прохождение большого тока, достаточного для питания. Примером могут стать РК-1p/2p (Un), МРП-2, IEK ORM-41F-1, DEKraft ПР-102 и им подобные. Обратите внимание, что часть из реле аналогичного плана рассчитаны на управление переменным током (AC), в то время как другие постоянным (DC). Кроме того, напряжения включения может отличаться в нижнюю сторону от номинала розетки. Последние два фактора важно учитывать при проектировании монтажной схемы. Если реле-посредник питается от постоянного тока, то фотореле должно управлять подачей электричества к блоку преобразования. Который уже включившись, приведет в действие электромагнитный контактор, активирующий основную линию питания клиентских устройств.

Использование иных моделей фотореле

Здесь представлена схема подключения фотореле для другого варианта исполнения конечного автомата — с выносным датчиком чувствительности к свету и раздельными контактными линиями. Изначально она подготовлена для ФР-7Е, но подходит и для аналогичных моделей иных производителей.

Обратите внимание, что представленное фотореле и упомянутое ранее, различаются корпусом, а в частности защитой устройства от внешних факторов. ФР-601/602 можно безболезненно размещать под открытым небом на улице, а у ФР-7Е для аналогичного действия требуется установка дополнительного кожуха. Но устройства подобного плана установки выпускаются со всеми необходимыми креплениями в стандартный электротехнический щиток, включая подготовленные места монтажа к DIN-рейке.

Расширение функциональности с добавлением реле времени

Планируя использовать фотореле для уличного освещения своими руками, можно слегка расширить его функциональность, добавив таймер отключающий свет через установленное время. Причина проста — не нужно тратить электричество на работу ламп всю ночь, когда они точно никому не нужны. С целью реализации можно использовать реле отключения, наподобие IEK ORT-A2-AC230V, THC-B1 или аналогичные.

Расширенная схема питания уличного освещения:

Микропроцессорное фотореле

Современные технологии коснулись и фотореле. Все чаще начинают применяться устройства на базе микроконтроллеров, которые позволяют не только производить определение наличия светового потока, но и совмещать множество других функций. Причем расширение не требует сильного изменения аппаратной составляющей, достаточно модифицировать внутреннюю программу.

Микроконтроллер — маленький компьютер, изначально ориентированный на управление устройствами в зависимости от внешних факторов и алгоритма. Кроме того, его возможностей вполне достаточно для присоединения к общей цифровой сети, объединяющей группы оборудования различного плана.

Также стоит упомянуть о промышленных образцах фотореле, оснащенных «умной» частью. Но их функциональность обычно ограничена производителем. Поэтому лучше рассмотреть другую систему. К примеру, Arduino. Его возможностей вполне достаточно для осуществления контроля света, отключения линии днем и ночью, отправки сообщений о текущем используемом режиме или сигнализации о нарушениях в работоспособности лампы.

На аппаратной стороне, все что непосредственно не касается функций контроля, возлагается на дополнительно подключаемые «шилды» к Arduino. В приведенной схеме последнее будет относиться к часам, датчику света и самому реле. Вопрос отправки статуса конечному владельцу решается за счет GSM модуля связи, который и будет отсылать SMS о текущем режиме работы системы.

Принципиальная схема конструкции достаточно проста:

Есть примечание, касающееся приведенной сборки. Обратите внимание, что релейный модуль имеет стороннее питание. Это сделано в целях избежания скачков тока, так как шилд берет много электричества из общей линии и может вызвать «просадку» напряжения при переключениях. Отдельное питание рекомендуется и SIM800L (на приведенной схеме он подключен напрямую к самому Arduino). Также модуль GSM-связи достаточно потребляющий элемент — ему нужно выработать определенную мощность для соединения с сотовой вышкой, а взять энергию с названой целью он может только из линии снабжения.

Что касается программной части, написать соответствующий алгоритм сможет любой, знакомый с программированием микроконтроллеров Arduino. Тем более, есть множество кодов в интернете.

Несмотря на функциональную простоту фотореле, ниш применения у него достаточно. Тем более, что малые возможности расширяются добавлением новых за счет небольшого усложнения схемы и использования микроконтроллеров.

Видео по теме

Источник

Оцените статью