- Как сделать бегущие огни на светодиодах?
- Микроконтроллер ATtiny2313 для бегущих огней
- Схема бегущих огней и принцип её работы
- Варианты сборки
- Бегущие огни на 12V
- Прошивка
- Схема бегущих огней на светодиодах и ATtiny2313
- Сердце бегущих огней
- Схема и принцип её работы
- Печатная плата и детали сборки
- Прошивка
- Бегущие огни с выбором программ
Как сделать бегущие огни на светодиодах?
Создание ленты бегущих светодиодов – это отличный вариант использования источника света в декоративных целях. Своими руками сделать бегущий огонь достаточно просто, тем более что в итоге изделие может обладать разными эффектами, включая затухание света и поочередную работу элементов.
Микроконтроллер ATtiny2313 для бегущих огней
Данное устройство относится к серии AVR микроконтроллеров бренда Atmel. Именно под его управлением чаще всего делают бегущую световую ленту, поскольку эксплуатационные характеристики модели достаточно высокие. Микроконтроллеры просты в программировании, многофункциональны и поддерживают реализацию разных электронных устройств.
ATtiny2313 сделан по простой схеме, где порт для вывода и ввода имеет идентичное значение. Выбрать программу (одну из 12) на таком микроконтроллере очень легко, ведь он не перегружен лишними опциями. Модель выпускается в двух корпусах – SOIC и PDIP, причем каждый вариант обладает идентичными характеристиками:
- 8-битные общие регистры в количестве 32 штук;
- возможности 120 операций за один тактовый цикл;
- flash-память внутри системы на 2 кБ с поддержкой 10 тысяч циклов стирания и записи;
- внутрисистемная EEPROM на 128 байт с поддержкой 100 тысяч циклов;
- 128 байт встроенной оперативки;
- 4 ШИМ-канала;
- счетчик-таймер на 8 и 16 бит;
- встроенный генератор;
- удобный для разных целей интерфейс и другие функции.
Микроконтроллер имеет два вида в соответствии с энергопараметрами:
- классическая модель ATtiny2313 обладает напряжением от 2,7 до 5,5 В и силой тока до 300 мкА на частоте 1 МГц в режиме активности;
- вариант ATtiny2313А (4313) обладает характеристиками в 1,8-5,5 В и 190 мкА при той же частоте.
В режиме ожидания устройство имеет энергопотребление не больше 1 мкА.
Как уже было указано, память микроконтроллера оснащена 11 комбинациями световых схем, а возможность выбора всех комбинаций светодиодов последовательно – это и есть 12 программа.
Схема бегущих огней и принцип её работы
Создаваемая схема бегущих огней на светодиодах базируется на размещении микроконтроллера в центре. Все его порты вывода соединяются со светодиодами:
- порт B или PB0-PB7 используется полностью для контроля над свечением;
- максимально задействованы три вывода от порта D (PD4-PD6);
- также работают PA0 и PA1, поскольку они свободны за счет реализуемого внутреннего генератора.
Вывод №1 – PA2 или Reset – не является активным звеном схемы, поэтому резистором R1 подсоединяется к цепи питания ATtiny2313. Плюсовая часть питания 5 В идет к выводу №20 – VCC, а минусовая — №10 (GND). Полярный конденсатор C1 устанавливается для предотвращения сбоев и гашения помех в работе МК.
Учитывая, что каждый вывод имеет малую нагрузочную способность, целесообразно ставить на них светодиоды с номиналом до 20 мА.
Подходят, как классические smd3258, так и led’ы повышенной яркости в DIP корпусе. Суммарно их должно быть 13 штук. Функция ограничения тока возлагается на резисторы R6-R18.
Работа схемы контролируется посредством посредством переключателя SA1, кнопок SB1-SB3 и цифровых входов PD0-PD3, которые подключаются через резисторы R2, R3, R6 и R7. Такая конструкция позволяет включать мигание светодиодов в 11 различных режимов, задавая конкретную программу кнопкой SB3. А с помощью переключателя SA1 изменяется скорость мигания. Для этого:
- SA1 переводится в замкнутое положение.
- Скорость изменяется кнопками SB1 (ускорение) и SB2 (замедление).
Обратите внимание, что при размыкании переключателя данными кнопками меняется яркость свечения светодиодов от еле заметного мерцания до максимальной мощности.
Варианты сборки
Существует два доступных и относительно простых варианта сборки бегущих огней: на печатной или макетной плате. И в том, и в другом случае желательно за основу брать схему в PDIP корпусе на панельке DIP-20. При этом нужно, чтобы остальные компоненты также были в DIP-корпусах.
При сборке на макетной плате будет достаточно модели 50×50 мм с шагом в 2,5 мм. Светодиоды можно будет разместить не только на самой плате, но и на внешней линейке, подключив их в схему с помощью гибких проводов.
Миниатюрная печатная плата более практичный вариант для тех случаев, когда бегущие огни на светодиодах своими руками делают для активной дальнейшей эксплуатации.
К примеру, когда они устанавливаются на велосипед или автомобиль. В этом случае понадобятся такие компоненты:
- односторонний текстолит 55×55 мм;
- конденсатор 100 мкФ-6,3В;
- DD1 – Attine 2313;
- резистор 10 кОм-0,25 Вт±5% (R1);
- 17 резисторов 1 кОм-0,25 Вт±5% (R2-R18);
- 13 светодиодов LED диаметром 3 мм (цвет не важен);
- 3 кнопки KLS7-TS6601 или аналог (SB1-SB3);
- переключатель движковый ESP1010 (SA1).
Радиолюбителям с практическим опытом сборки печатных плат лучше взять для этой схемы Attine2313 SOIC c SMD резисторами. За счет этого общие габариты схемы уменьшатся почти в два раза. Можно также отдельным блоком установить сверхъяркие SMD светодиоды.
Бегущие огни на 12V
Эта схема бегущих огней на 12 вольт широко известна в сети, так как имеет очень простую и понятную конструкцию. Генератором режима выступает таймер импульсов, а счетчик, подсчитывая их, подает на выходы соответствующие логические уровни. Светодиодный элемент, подключенный к каждому выходу, загорается при логической единице и гаснет при нуле. Эффект бегущих огней создается за счет последовательного мерцания. Скорость «бега» задается генератором, работа которого контролируется номинальными параметрами конденсатора C1 и резистора R1.
Яркость светодиодов усиливается за счет увеличения подаваемого тока, но для этого их следует подключать через буферные транзисторы. Дело в том, что выходы счетчика не отличаются высокой нагрузочной способностью.
В этой старой схеме приведены советские обозначения компонентов и микросхем, но в наше время не сложно найти соответствующие им аналоги зарубежного производства.
Прошивка
Микроконтроллер ATtine 2313 рекомендуется прошивать с помощью самодельного программатора, который подключается через RS-232 или популярный PoneProg2000. Перед началом прошивки надо выставить фьюзы так, как указано на рисунке.
Источник
Схема бегущих огней на светодиодах и ATtiny2313
Среди десятков разнообразных светодиодных мигалок достойное место занимает схема бегущих огней на светодиодах, собранная на микроконтроллере ATtiny2313. С её помощью можно создавать различные световые эффекты: от стандартного поочерёдного свечения до красочного плавного нарастания и затухания огня. Один из вариантов того, как сделать своими руками бегущий огонь на светодиодах под управлением МК ATtiny2313, рассмотрим на конкретном примере.
Сердце бегущих огней
То, что AVR микроконтроллеры Atmel обладают высокими эксплуатационными характеристиками – всем известный факт. Их многофункциональность и лёгкость программирования позволяет реализовывать самые необыкновенные электронные устройства. Но начинать знакомство с микроконтроллерной техникой лучше со сборки простых схем, в которых порты ввода/вывода имеют одинаковое назначение.
Одной из таких схем являются бегущие огни с выбором программ на ATtiny2313. В данном микроконтроллере есть всё необходимое для реализации подобных проектов. При этом он не перегружен дополнительными функциями, за которые пришлось бы переплачивать. Выпускается ATtiny2313 в корпусе PDIP и SOIC и имеет следующие технические характеристики:
- 32 8-битных рабочих регистра общего назначения;
- 120 операций, выполняемых за 1 тактовый цикл;
- 2 кБ внутрисистемной flash-памяти, выдерживающей 10 тыс. циклов запись/стирание;
- 128 байт внутрисистемной EEPROM, выдерживающей 100 тыс. циклов запись/стирание;
- 128 байт встроенной оперативной памяти;
- 8-битный и 16-битный счётчик/таймер;
- 4 ШИМ канала;
- встроенный генератор;
- универсальный последовательный интерфейс и прочие полезные функции.
Энергетические параметры зависят от модификации:
- ATtiny2313 – 2,7-5,5В и до 300 мкА в активном режиме на частоте 1 МГц;
- ATtiny2313А (4313) – 1,8-5,5В и до 190 мкА в активном режиме на частоте 1 МГц.
В ждущем режиме энергопотребление снижается на два порядка и не превышает 1 мкА. Кроме этого данное семейство микроконтроллеров обладает целым рядом специальных свойств. С полным перечнем возможностей ATtiny2313 можно ознакомиться на официальной страничке производителя www.atmel.com.
Схема и принцип её работы
В центре принципиальной электрической схемы расположен МК ATtiny2313, к 13-ти выводам которого подключены светодиоды. В частности, для управления свечением полностью задействован порт В (PB0-PB7), 3 вывода порта D (PD4-PD6), а также PA0 и PA1, которые остались свободными из-за применённого внутреннего генератора. Первый вывод PA2 (Reset) не принимает активного участия в схеме и через резистор R1 соединён с цепью питания МК. Плюс питания 5В подаётся на 20-й вывод (VCC), а минус – на 10-й вывод (GND). Для исключения помех и сбоев в работе МК по питанию установлен полярный конденсатор С1. С учётом небольшой нагрузочной способности каждого вывода подключать следует светодиоды, рассчитанные на номинальный ток не более 20 мА. Это могут быть как сверхъяркие led в DIP корпусе с прозрачной линзой, так и smd3528. Всего их в данной схеме бегущих огней 13 шт. В качестве ограничителей тока выступают резисторы R6-R18.
Нумерация светодиодов на схеме указана в соответствии с прошивкой.
Через цифровые входы PD0-PD3, а также с помощью кнопок SB1-SB3 и переключателя SA1 производится управление работой схемы. Все они подключены через резисторы R2, R3, R6, R7. На программном уровне предусмотрено 11 различных вариаций мигания светодиодов, а также последовательный перебор всех эффектов. Выбор программы задаётся кнопкой SB3. В пределах каждой программы можно изменять скорость её выполнения (мигания светодиодов). Для этого переключатель SA1 переводят в замкнутое положение (скорость программы) и кнопками увеличения (SB1) и уменьшения (SB2) скорости добиваются желаемого эффекта. Если SA1 разомкнуть, то кнопки SB1 и SB2 будут регулировать яркость светодиодов (от слабого мерцания до свечения на номинальной мощности).
Печатная плата и детали сборки
Специально для начинающих радиолюбителей предлагаем два варианта сборки бегущих огней: на макетной и на печатной плате. В обоих случаях рекомендуется использовать микросхему в PDIP корпусе, устанавливаемую в DIP-20 панельку. Все остальные детали также в DIP корпусах. В первом случае достаточно будет макетной платы 50х50 мм с шагом 2,5 мм. При этом светодиоды можно разместить, как на плате, так и на отдельной линейке, соединив их с макетной платой гибкими проводами.
Печатную плату в формате .lay6 можно скачать здесь.
Если бегущие огни на светодиодах предполагается активно использовать в дальнейшем (например, в автомобиле, велосипеде), то лучше собрать миниатюрную печатную плату. Для этого понадобится односторонний текстолит размером 55*55 мм, а также радиоэлементы:
- С1 – 100 мкФ-6,3В;
- DD1 – ATtiny2313;
- HL1-HL13 – LED любого цвета диаметром 3 мм;
- R1 – 10 кОм-0,25 Вт±5%;
- R2-R18 – 1 кОм-0,25 Вт±5%;
- SB1-SB3 – тактовая кнопка KLS7-TS6601 (любая аналогичная);
- SA1 – трёхвыводной движковый переключатель ESP1010.
Для тех, кто имеет опыт изготовления печатных плат, лучше использовать ATtiny2313 форм-фактора SOIC, а также smd резисторы. Это позволит уменьшить размеры устройства примерно в 2 раза. Также можно взять сверхъяркие smd светодиоды и разместить их отдельным блоком.
Прошивка
Для прошивки МК ATtiny2313 следует использовать самодельный программатор, подключаемый к RS-232 компьютера и известный многим PonyProg2000. Перед прошивкой необходимо выставить фьюзы в соответствии с таблицей.
Прошивку для бегущих огней на ATtiny2313 можно скачать здесь.
Источник
Бегущие огни с выбором программ
Для более четкого представления о работе прибора рассмотрим некоторые его основные узлы. Начнём рассматривать работу бегущих огней с микросхемы К155ЛА3 которая является набором из четырёх логических элементов 2И-НЕ изображённого на рис.1.
1,2,4,5,9,10,12,13 — входы X1-X8;
3 — выход Y1;
6 — выход Y2;
7 — общий;
8 — выход Y3;
11 — выход Y4;
14 — напряжение питания;
Мы используем только два элемента 2И-НЕ. Ниже приведённая схема генератора выдаёт чередование прямоугольных импульсов логического нуля и логической единицы показанных на графике.
На генераторе предусмотрена регулировка скорости и продолжительности чередования логических импульсов с помощью R1 и C1.
Если к выводу 6 подключить светодиод через резистор 1 кОм – то мы увидим, что у нас получилась простая мигалка на микросхеме с регулируемой скоростью мерцания.
Далее рассмотрим микросхему К155ТМ2 – которая включает в себя два независимых D-триггера, срабатывающих по положительному фронту тактового сигнала, к ней и осуществим подключение тактового генератора.
Условное графическое обозначение К155ТМ2 приведено на рис.2. На рис.3 приведена структурная схема и таблица истинности одного из элементов микросхемы, где каждый элемент состоит из четырёх элементов 2И-НЕ.
А ниже приводится «расшифровка» выводов микросхемы:
1 — инверсный вход установки «0» R1;
2 — вход D1;
3 — вход синхронизации C1;
4 — инверсный вход установки «1» S1;
5 — выход Q1;
6 — выход инверсный Q1;
7 — общий;
8 — выход инверсный Q2;
9 — вход Q2;
10 — инверсный вход установки «1» S2;
11 — вход синхронизации C2;
12 — вход D2;
13 — инверсный вход установки «0» R2;
14 — напряжение питания;
Далее мы кратко рассмотрим работу одного каскада триггера изображённого на рис.4.
Подключим вывод 2 к инверсному выводу 6 и подключим к выводу 3 тактовый генератор. При поступлении логической единицы на вывод 3 на выводе 5 будет переключение на логическую единицу, при прохождении очередной логической единицы на вывод 3 — произойдёт переключение на логический ноль (вывод 5) и так будет происходить переключение до бесконечности. На выводе 6 (который является инверсным) будет зеркальное значение 5-го вывода.
А бегущие огни составим из тактового генератора и четырёх элементов триггера (2 микросхемы К155ТМ2) рис.5
На схеме мы видим не фиксируемую кнопку S2 которая служит для переключения подпрограмм и селектор S1 которым осуществляется переключение основных программ. Если сделать небольшие изменения в схеме — отсоединить вывод идущий к 13 ноге D1.2 и подключить его к выводу 10 D1.2 и сделать то же самое на второй микросхеме, то изменятся и программы индикации (изменение отмечено на схеме пунктиром). Если использовать многосекционный селектор S1, то можно подключить отмеченное пунктиром изменение к селектору и тем самым увеличить число программ.
В схеме используются лампочки напряжением 2.5-3.6 вольта, но если использовать светодиоды, то надобность в транзисторах отпадает (на схеме отмечено красным квадратом) и подключение светодиодов осуществляется к Т,Т1,М,М1,Р,Р1,F,F1 рис.5а.
Если использовать лампы на 220 вольт, то вместо транзисторов нужно подключить симисторы или как их ещё называют симметричные тиристоры, триодный тиристор или триак. Условное графическое обозначение симистора на рис.6
Симистор можно представить двумя тиристорами, включенными встречно-параллельно. Он пропускает ток в обоих направлениях. Симистор имеет три электрода: один управляющий и два основных для пропускания рабочего тока. Структура этого полупроводникового прибора показана на рис.6а. На рис.6 б внешний вид симистора КУ208.
На Рис.7 показана схема бегущих огней с симисторным управлением.
Собранный девайс изнутри и внешний вид устройства.
Используемые детали в бегущих огнях можно заменить на импортные и отечественные аналоги: К155ЛА3 на SN7400, К155ТМ2 на SN7474N, транзисторы КТ315 на КТ342; КТ503; КТ3102; 2N9014; ВС546В, а КУ208 на BT134; BT136. Светодиоды можно применять любые. Стоимость деталей приблизительно составляет 60 — 100 рублей.
Данную схему легко переработать и изменить алгоритм работы.
Сама схема имеет минимум легкодоступных деталей, легка в сборке и при правильном монтаже в наладке не нуждается.
Источник