Что такое бесконтактный пускатель
Бесконтактные тиристорные пускатели применяют для безопасной коммутации трехфазных двигателей, приводов мощных насосов, транспортеров, вентиляторов, компрессоров и другого оборудования, питаемого напряжением 380 вольт. Сегодня они находят широкое применение во многих отраслях промышленности, таких как: машиностроение, металлургия, производство строительных материалов, сельское хозяйство и во многих других.
Пускатели включают как по стандартной схеме, так и с применением контроллеров, дающих управляющие сигналы, обычно напряжением в 24 вольта. Тиристорные пускатели могут работать в широких температурном и влажностном диапазонах, однако окружающая среда не должна содержать токопроводящих загрязнений и агрессивных веществ, способных разрушить металл и изоляцию.
Бесконтактные пускатели бывают реверсивными и не реверсивными, работают они на базе тиристорных или симисторных ключей, способных выдерживать токи в сотни ампер, так например пускатель номиналом 100А может легко выдержать трехкратную токовую перегрузку в течение получаса.
Пускатель содержит три силовых тиристора, включенных встречно-параллельно, и элементы управления, а также индикаторы режима работы и разъемы для включения прибора в схему управления двигателем.
Принцип работы тиристорного пускателя основан на бесконтактной коммутации цепей электродвигателя посредством полупроводниковых приборов, с помощью схемы управления. Коммутация происходит в моменты перехода питающей фазы через ноль, чтобы броски тока в сети были по возможности минимальными.
При нажатии на кнопку «пуск», напряжение питания подается на плату контроллера, и на управляющие электроды тиристоров подается сигнал на открытие; при переходе фазы сети через ноль, двигатель подключается к сети. Индикационные светодиоды свидетельствуют о режиме работы пускателя.
При нажатии на кнопку «стоп», сигналы с управляющих электродов тиристоров пропадают, в момент перехода фазы сети через ноль, и двигатель отключается. В связи с тем, что контроллер отслеживает переход через ноль, имеет место небольшая задержка при отключении тиристоров.
Отличительные особенности бесконтактных тиристорных пускателей заключаются в следующем. Для питания управляющей схемы используется безопасное напряжение 24 вольта. Применение полупроводников и оптических драйверов обеспечивает полную гальваническую развязку силовой части пускателя от цепи управления, в этом безопасность. Плата управления может легко запустить реверс двигателя, качественно погасив переходный процесс во время небольшой задержки, что сохранит двигатель, продлит срок его службы во много раз. Сами пускатели при этом весьма долговечны, опять же благодаря «умной» схеме управления.
Прежде чем включить пускатель в цепь согласно требуемой схеме, проверяют соответствие параметров сети, параметров двигателя, и технических характеристик пускателя, его номинала. В комплект с пускателями входят соединительные проводники.
В процессе эксплуатации необходимо очищать периодически контактные и другие открытые поверхности от пыли и прочих загрязнений, могущих нарушить работу пускателя и всей цепи. Несмотря на наличие гальванической развязки цепей управления, в схему электроснабжения пускателя должен быть обязательно включен групповой автомат или индивидуальные автоматы, обеспечивающие аварийное размыкание силовой цепи.
Источник
Бесконтактные тиристорные контакторы и пускатели
Коммутация тока в цепи электромагнитными пускателями, контакторами, реле, аппаратами ручного управления (рубильниками, пакетными выключателями, переключателями, кнопками и т. д.) осуществляется изменением в широких пределах электрического сопротивления коммутирующего органа. В контактных аппаратах таким органом является межконтактный промежуток. Его сопротивление при замкнутых контактах очень мало, при разомкнутых может быть очень высоким. В режиме коммутации цепи происходит очень быстрое скачкообразное изменение сопротивления меж контактного промежутка от минимальных до максимальных предельных значений (отключение), или наоборот (включение).
Бесконтактными электрическими аппаратами называют устройства, предназначенные для включения и отключения (коммутации) электрических цепей без физического разрыва самой цепи. Основой для построения бесконтактных аппаратов служат различные элементы с нелинейным электрическим сопротивлением, величина которого изменяется в достаточно широких пределах, в настоящее время это — тиристоры и транзисторы, раньше использовались магнитные усилители.
Достоинства и недостатки бесконтактных аппаратов по сравнению с обычными пускателями и контакторами
По сравнению с контактными аппаратами бесконтактные имеют преимущества:
— не образуется электрическая дуга, оказывающая разрушительное воздействие на детали аппарата; время срабатывания может достигать небольших величин, поэтому они допускают большую частоту срабатываний (сотни тысяч срабатываний в час),
— не изнашиваются механически,
В то же время, у бесконтактных аппаратов есть и недостатки:
— они не обеспечивают гальваническую развязку в цепи и не создают видимого разрыва в ней, что важно с точки зрения техники безопасности;
— глубина коммутации на несколько порядков меньше контактных аппаратов,
— габариты, вес и стоимость на сопоставимые технические параметры выше.
Бесконтактные аппараты, построенные на полупроводниковых элементах, весьма чувствительны к перенапряжениям и сверхтокам. Чем больше номинальный ток элемента, тем ниже обратное напряжение, которое способен выдержать этот элемент в непроводящем состоянии. Для элементов, рассчитанных на токи в сотни ампер, это напряжение измеряется несколькими сотнями вольт.
Возможности контактных аппаратов в этом отношении неограниченны: воздушный промежуток между контактами протяженностью 1 см способен выдержать напряжение до 30 000 В. Полупроводниковые элементы допускают лишь кратковременную перегрузку током: в течение десятых долей секунды по ним может протекать ток порядка десятикратного по отношению к номинальному. Контактные аппараты способны выдерживать стократные перегрузки током в течение указанных отрезков времени.
Падение напряжения на полупроводниковом элементе в проводящем состоянии при номинальном токе примерно в 50 раз больше, чем в обычных контактах. Это определяет большие тепловые потери в полупроводниковом элементе в режиме длительного тока и необходимость в специальных охлаждающих устройствах.
Все это говорит о том, что вопрос о выборе контактного или бесконтактного аппарата определяется заданными условиями работы. При небольших коммутируемых токах и невысоких напряжениях использование бесконтактных аппаратов может оказаться более, целесообразным, чем контактных.
Бесконтактные аппараты нельзя заменить контактными в условиях большой частоты срабатываний и большого быстродействия.
Безусловно, бесконтактные аппараты даже при больших токах предпочтительны, когда требуется обеспечить усилительный режим управления цепью. Но в настоящее время контактные аппараты имеют оределенные преимущества перед бесконтактными, если при относительно больших токах и напряжениях требуется обеспечивать коммутационный режим, т. е. простое отключение и включение цепей с током при небольшой частоте срабатываний аппарата.
Существенным недостатком элементов электромагнитной аппаратуры, коммутирующих электрические цепи, является низкая надежность контактов. Коммутация больших значений тока связана с возникновением электрической дуги между контактами в момент размыкания, которая вызывает их нагрев, оплавление и, как следствие, выход аппарата из строя.
В установках с частым включением и отключением силовых цепей ненадежная работа контактов коммутирующих аппаратов отрицательно сказывается на работоспособности и производительности всей установки. Бесконтактные электрические коммутирующие аппараты лишены указанных недостатков.
Тиристорный однополюсный контактор
Для включения контактора и подачи напряжения на нагрузку должны замкнуться контакты К в цепи управления тиристоров VS1 и VS2. Если в этот момент на зажиме 1 положительный потенциал (положительная полуволна синусоиды переменного тока), то на управляющий электрод тиристора VS1 будет подано через резистор R1 и диод VD1 положительное напряжение. Тиристор VS1 откроется, и через нагрузку Rн пойдет ток. При смене полярности напряжения сети откроется тиристор VS2, таким образом, нагрузка будет подключена к сети переменного тока. При отключении контактами К размыкаются цепи управляющих электродов, тиристоры закрываются и нагрузка отключается от сети.
Схема электрическая однополюсного контактора
Бесконтактные тиристорные пускатели
Для включения, отключения, реверсирования в схемах управления асинхронными электродвигателями разработаны тиристорные трехполюсные пускатели серии ПТ. Пускатель трехполюсного исполнения в схеме имеет шесть тиристоров VS1, …, VS6, включенных по два тиристора на каждый полюс. Включение пускателя осуществляется посредством кнопок управления SB1 «Пуск» и SB2 «Стоп».
Бесконтактный трехполюсный пускатель на тиристорах серии ПТ
Схема тиристорного пускателя предусматривает защиту электродвигателя от перегрузки, для этого в силовую часть схемы установлены трансформаторы тока ТА1 и ТА2, вторичные обмотки которых включены в блок управления тиристорами.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Онлайн журнал электрика
Статьи по электроремонту и электромонтажу
Бесконтактные тиристорные контакторы и пускатели
Коммутация тока в цепи электрическими пускателями, контакторами, реле, аппаратами ручного управления (рубильниками, пакетными выключателями, тумблерами, клавишами и т. д.) осуществляется конфигурацией в широких границах электронного сопротивления коммутирующего органа. В контактных аппаратах таким органом является межконтактный просвет. Его сопротивление при замкнутых контактах сильно мало, при разомкнутых может быть очень высочайшим. В режиме коммутации цепи происходит очень резвое скачкообразное изменение сопротивления меж контактного промежутка от малых до наибольших предельных значений (отключение), либо напротив (включение).
Бесконтактными электронными аппаратами именуют устройства, созданные для включения и отключения (коммутации) электронных цепей без физического разрыва самой цепи. Основой для построения бесконтактных аппаратов служат разные элементы с нелинейным электронным сопротивлением, величина которого меняется в довольно широких границах, в текущее время это — тиристоры и транзисторы, ранее использовались магнитные усилители.
Плюсы и недочеты бесконтактных аппаратов по сопоставлению с обыкновенными пускателями и контакторами
По сопоставлению с контактными аппаратами бесконтактные имеют достоинства:
— не появляется электронная дуга, оказывающая разрушительное воздействие на детали аппарата; время срабатывания может достигать маленьких величин, потому они допускают огромную частоту срабатываний (сотки тыщ срабатываний в час),
— не изнашиваются механически,
В то же время, у бесконтактных аппаратов есть и недочеты:
— они не обеспечивают гальваническую развязку в цепи и не делают видимого разрыва в ней, что принципиально исходя из убеждений техники безопасности;
— глубина коммутации на несколько порядков меньше контактных аппаратов,
— габариты, вес и цена на сопоставимые технические характеристики выше.
Бесконтактные аппараты, построенные на полупроводниковых элементах, очень чувствительны к перенапряжениям и сверхтокам. Чем больше номинальный ток элемента, тем ниже оборотное напряжение, которое способен выдержать этот элемент в непроводящем состоянии. Для частей, рассчитанных на токи в сотки ампер, это напряжение измеряется несколькими сотками вольт.
Способности контактных аппаратов тут неограниченны: воздушный просвет меж контактами протяженностью 1 см способен выдержать напряжение до 30 000 В. Полупроводниковые элементы допускают только краткосрочную перегрузку током: в течение 10-х толикой секунды по ним может протекать ток порядка десятикратного по отношению к номинальному. Контактные аппараты способны выдерживать стократные перегрузки током в течение обозначенных отрезков времени.
Падение напряжения на полупроводниковом элементе в проводящем состоянии при номинальном токе приблизительно в 50 раз больше, чем в обыденных контактах. Это определяет огромные теплопотери в полупроводниковом элементе в режиме долгого тока и необходимость в особых охлаждающих устройствах.
Все это гласит о том, что вопрос о выборе контактного либо бесконтактного аппарата определяется данными критериями работы. При маленьких коммутируемых токах и низких напряжениях внедрение бесконтактных аппаратов возможно окажется более, целесообразным, чем контактных.
Бесконтактные аппараты нельзя поменять контактными в критериях большой частоты срабатываний и огромного быстродействия.
Непременно, бесконтактные аппараты даже при огромных токах предпочтительны, когда требуется обеспечить усилительный режим управления цепью. Но в текущее время контактные аппараты имеют оределенные достоинства перед бесконтактными, если при относительно огромных токах и напряжениях требуется обеспечивать коммутационный режим, т. е. обычное отключение и включение цепей с током при маленький частоте срабатываний аппарата.
Значимым недочетом частей электрической аппаратуры, коммутирующих электронные цепи, является низкая надежность контактов. Коммутация огромных значений тока связана с появлением электронной дуги меж контактами в момент размыкания, которая вызывает их нагрев, оплавление и, как следствие, выход аппарата из строя.
В установках с частым включением и отключением силовых цепей ненадежная работа контактов коммутирующих аппаратов негативно сказывается на работоспособности и производительности всей установки. Бесконтактные электронные коммутирующие аппараты лишены обозначенных недочетов.
Тиристорный однополюсный контактор
Для включения контактора и подачи напряжения на нагрузку должны замкнуться контакты К в цепи управления тиристоров VS1
и VS2. Если в этот момент на зажиме 1 положительный потенциал (положительная полуволна синусоиды переменного тока), то на управляющий электрод тиристора VS1 будет подано через резистор R1 и диодик VD1 положительное напряжение. Тиристор VS1 раскроется, и через нагрузку Rн пойдет ток. При смене полярности напряжения сети раскроется тиристор VS2, таким макаром, нагрузка будет подключена к сети переменного тока. При выключении контактами К размыкаются цепи управляющих электродов, тиристоры запираются и нагрузка отключается от сети.
Схема электронная однополюсного контактора
Бесконтактные тиристорные пускатели
Для включения, отключения, реверсирования в схемах управления асинхронными электродвигателями разработаны тиристорные трехполюсные пускатели серии ПТ. Пускатель трехполюсного выполнения в схеме имеет 6 тиристоров VS1, …, VS6, включенных по два тиристора на каждый полюс. Включение пускателя осуществляется средством кнопок управления SB1 «Пуск» и SB2 «Стоп».
Бесконтактный трехполюсный пускатель
на тиристорах серии ПТ
Схема тиристорного пускателя предугадывает защиту электродвигателя от перегрузки, для этого в силовую часть схемы установлены трансформаторы тока ТА1 и ТА2, вторичные обмотки которых включены в блок управления тиристорами.
Источник