- Как сделать беспроводной светодиод
- Беспроводной светодиод
- Схема и работа беспроводного светодиода
- Сборка и тестирование
- Беспроводной светодиод | Мастер-класс своими руками
- Схема
- Детали для схемы
- Сам светодиод
- Делаем генератор
- Смотрите видео
- Хотите вечных светодиодов? Расчехляйте паяльники и напильники. Или домашнее освещение самодельщика
- Почему светодиодные лампочки не вечны?
- Что делать-то?
- Рынок
- Самодельный светильник: проектирование
- Конструкция
- Результаты
Как сделать беспроводной светодиод
Жизнь не стоит на месте и преподносит нам постоянно технические решения, о которых раньше можно было только мечтать. Одно из них – беспроводное питание разных гаджетов, устройств. Сделать такое можно и со светодиодом, который будет светиться, не имея подводящих электричество проводов.
В принципиальной схеме такого решения всего один транзистор. Она является близким аналогом классического высокочастотного генератора, в котором имеется индуктор и обратная связь. В качестве индуктора используется проволока, уложенная в петлю. Такой же приемной петлей снабжается светодиод. Питание устройства построено на основе пальчиковых батареек.
Когда отмеченные выше петли совмещаются, энергия передается на светодиод и «зажигает» его. Такое возможно на определенном расстоянии, что и обеспечивает решение – свечение светодиода при отсутствии проводов, которые подводят к нему электроэнергию.
Сомнение у некоторых может вызвать отсутствие обычной для таких типов генератора обратной связи, которая включает конденсатор. В предлагаемом решении работа генератора происходит на высокой частоте, что делает конденсатор не нужным. К тому же индуктивности, которые представлены петлями из проводов, находятся одна от другой на небольшом расстоянии.
Чтобы сделать схему, заявленную в заголовке, нужно запастись шестью пальчиковыми батарейками, одним красным светодиодом, транзистором (тип BF494, подходит аналогичный), конденсатором емкостью 0,1 мкФ, резистором 33 кОм, индуктивностью 330 мкГ, проводами, припоем, куском одножильного, средней толщины проводом для петель индуктора.
Начинают работу со светодиода. Она простая – сгибают его выводы в кольцо и запаивают. Этого достаточно для приемного индуктора высокочастотного излучения.
Далее собирают генератор. К одному крайнему выходу транзистора припаивают через индуктивность «минусовый» провод от источника питания; к среднему – через петлю из очищенного от изоляции провода «плюсовой». Последний изгибается по кругу и представляет петлю индуктора. Между другим крайним выходом транзистора и началом петли индуктора устраивают двойную перемычку, располагая в одной резистор, а в другой – конденсатор.
Подключают питание к собранному генератору и подносят к нему светодиод. При правильной сборке он должен загореться. Дальше отводят светодиод понемногу от генератора. Он будет светиться и на некотором расстоянии, которое, для подобной схемы, измеряется несколькими сантиметрами.
Для демонстрации необычного поведения светодиода можно блок питания, генератор разметить под столом. Светодиод, который располагается сверху крышки стола, будет начинать светиться, когда его размещают в определенном месте.
Источник
Беспроводной светодиод
Беспроводной светодиод. Схемы.
Беспроводная мощность передается от передатчика к приемной катушке по принципу индуктивной связи. Для эффективной передачи беспроводной мощности частота передатчика и приемника должна быть настроена на одну и ту же частоту. LC-бак на стороне передатчика создает колебательное магнитное поле настроенной частоты. LC-бак на стороне приемника такой же, как частота на стороне передатчика, что обеспечивает высокую эффективность. Давайте построим беспроводной светодиод.
Этот светодиод с беспроводным питанием может использоваться в зарядных устройствах для мобильных телефонов, электрических зубных щетках и при маломощных нагрузках, таких как светодиоды, SMPS, роторы и так далее. Авторский прототип показан на рис. 1.
Рис. 1: Авторский прототип
Схема и работа беспроводного светодиода
Принципиальная схема блока передатчика показана на рис. 2. Он построен на 5В регуляторе напряжения 7805 (IC1), таймере NE555 (IC2) и нескольких других компонентах.
Выход положительного напряжения регулятора 7805 обеспечивает 5 В для NE555 и BC547. NE555 настроен как нестабильный мультивибратор для генерации импульсов. Конденсатор заряжается через резисторы R1 и R2.
Время зарядки t1 = 0,693 (R1 + R2) × C3 Время разряда t2 = 0,693 (R2) × C3 Частота колебаний F = (1,44 / (R1 + 2R2) × C3) = 18,94 кГц C4 – это байпасный конденсатор на выводе управляющего напряжения 5 из NE555. T1 – драйвер для мощного полевого МОП-транзистора IRF540 (T2). T2 управляет контуром LC-бака, резонирующим с частотой F = 1 / (2p (LC)), где L = L1 = 180 мкГн и C = C5 + C6 = 0,1 мкФ + 0,1 мкФ = 0,2 мкФ
Поэтому настроенная частота F составляет около 26 кГц. Он генерирует осциллирующее магнитное поле вокруг катушки на частоте 26 кГц, связанной с цепью LC-ресивера приемника.
Принципиальная схема приемного устройства приведена на рис. 3. Он построен на базе стабилизатора напряжения IC IC34063 и нескольких других компонентов.
Рис. 3: принципиальная схема приемного устройства
Индуктор L2 и конденсаторы C7 и C13 образуют схему резервуара LC, настроенную на частоту резервуара LC на стороне передатчика. Частота приемника LC-бака составляет 26 кГц с использованием частотной формулы, описанной ранее.
Рис. 4: Авторский прототип, демонстрирующий работу с катушками в перпендикулярных положениях
Мостовой выпрямитель BR1 используется для преобразования высокочастотного переменного тока в пульсирующий постоянный ток. C8 и C9 являются сглаживающими конденсаторами для обеспечения регулируемого напряжения постоянного тока. Для достижения высокой эффективности используется микросхема Buck / Boost MC34063. Имеет широкий диапазон входного напряжения от 3 до 40 В. Его максимальный выходной ток составляет 1,5 А с регулируемым выходным напряжением.
В этой схеме он настроен как понижающий преобразователь или понижающий преобразователь. Выход (V_out) понижающего преобразователя, который появляется в C11 и C12 относительно земли, рассчитывается как V_out = 1,25 В (1 + R6 / R8)
где, 1.25V является внутренним источником опорного напряжения микросхемы MC34063. Итак, V_out = 1,25 В (1 + 15 кОм / 4,7 кОм) = 5,2 В, что достаточно для питания светодиодов питания (LED1 и LED2).
R9 и R10 являются токоограничивающими резисторами для LED1 и LED2.
Сборка и тестирование
Схема односторонней печатной платы фактического размера для передающего модуля для беспроводного светодиода показана на рис. 5, а компоновка ее компонентов на рис. 6. Аналогично, схема односторонней печатной платы фактического размера для приемного блока беспроводной сети Светодиод показан на рис. 7, а расположение его компонентов на рис. 8. После сборки цепей на печатных платах заключите их в две отдельные коробки.
Рис. 5: Схема печатных плат фактического размера модуля передатчика беспроводного светодиода
Рис. 6: Компонентная схема печатной платы, показанная на рис. 5
Рис. 7: Схема печатной платы фактического размера блока приемника беспроводного светодиода
Рис. 8: Компоновка компоновки печатной платы показана на рис. 7
Нагрузочный тест. Приемник может выдавать ток нагрузки 271 мА при постоянном напряжении 5,2 В.
Поэтому приблизительная выходная мощность = 5,2 В × 271 мА = 1,4 Вт, а потребляемая мощность передатчика = 12 В × 180 мА = 2,16 Вт (прибл.).
Когда приемник находится вдали от передатчика, потребляемая передатчиком мощность = 12 В × 20 мА = 240 мВт.
КПД = выходная мощность / входная мощность = 1,4 / 2,16 = 0,648 или 64,8%. Из-за катушек с воздушным сердечником (с меньшей магнитной связью) эффективность низкая. Это можно улучшить с помощью катушек на магнитной основе.
Источник
Беспроводной светодиод | Мастер-класс своими руками
Я покажу вам способ как заставить светодиод светиться без подключения к нему проводов. Для это нужно будет собрать несложное устройство на одном транзисторе. И вы сможете разыграть друзей, продемонстрировав им свои магические возможности.
Схема
Принципиальная схема на одном транзисторе. Это почти классический высокочастотный генератор с индуктором и обратной связью.
Индуктор представляет собой проволоку, выполненную в виде круглой петли. Светодиод так же имеет приемную петлю. При совмещении этих петель вместе на некотором расстоянии — энергия передается светодиоду и он начинает светиться.
Питается вся схема от пальчиковых батареек.
Возможно у вас закрадется вопрос — где обратна связь в этом генераторе? Генератор работает на очень высокой радио частоте. И конденсатора для обратный связи не требуется, так к сам корпус транзистора имеет небольшую емкость. Плюс ко всему индуктивности расположены очень близко между собой.
Детали для схемы
1. Батарейки — 6 шт.
2. Один красный светодиод.
3. Транзистор, типа BF494 или аналогичный.
4. Конденсатор 0,1 мкФ.
5. Резистор 33 кОм.
6. Индуктивность 330 мкГ.
Провода, припой и т. д. по мере необходимости.
Для петли индуктора — любой кусочек одножильного провода, не сильно тонкого.
Сам светодиод
Светодиод потребует доработки. Его вывода нужно согнуть в кольцо и запаять. Все. Приемный индикатор высокочастотного излучения готов.
Делаем генератор
Очень желательно спаять все так как у меня на рисунке.
Я так же собрал два колечка со светодиодом. Один красный, другой синий. Так, на всякий случай.
Подключите генератор к источнику питания. И подносим светодиод, если светится — все работает.
Далее проверяем расстояние, но котором работает светодиод. Оно будет порядка нескольких сантиметров.
Теперь остается закрепить схему и элементы питания под столом и удивлять своих друзей, веселым и необычным даром. Всего доброго!
Смотрите видео
Источник
Хотите вечных светодиодов? Расчехляйте паяльники и напильники. Или домашнее освещение самодельщика
Когда-то давным давно, когда я еще учился в школе, а на дворе был конец перестройки, мой дядя (заронивший в меня интерес к электронике) припер домой сумку вынесенного через проходную завода добра. Собственно, такие сумки он приносил домой вполне регулярно, пополняя запасы, хранившиеся в диване. Диван этот, как вы догадываетесь, манил, и иногда в отсутствии дяди я в него заглядывал с восторгом. Но кое-что из этой сумки в диван не попало, а попало в мои руки. Дядя мне вручил пачку — штук десять — макетных плат, и новенькую нераспечатанную коробку дефицитных, да и не дешевых в то время светодиодов. Причем светодиоды были не простые: вместо привычной маркировки АЛ-что-то там на коробке стоял код из четырех цифр, как я понял — они были экспериментальные. И они были яркие. По сравнению с привычными АЛ307 или АЛ310 — просто ослепительные. И их к тому же было много — штук 50.
Идея «куда это богатство применить» возникла моментально: светодиоды были распаяны на одной из макетниц — сколько влезло (влезли не все), и из них вышел великолепный красный фонарь для печати фотографий, который абсолютно не засвечивал фотобумагу даже в упор. Правда, тут же я узнал о том, что «светодиоды не греются» — это вранье, так что ток пришлось снизить вдвое, с 10 мА на светодиод до 5. А еще через полгода успешной эксплуатации узнал и о том, что «светодиоды не перегорают» — это тоже неправда: первый светодиод в сборке погас, оказался пробит. А со временем и весь фонарь пришел в негодность.
И вот сейчас я снова слышу из каждого утюга про «вечные» светодиодные лампочки, а дома за неполный год перехода на светодиодные лампы перегорела уже третья по счету.
Почему светодиодные лампочки не вечны?
Да потому что ничего нет вечного. Светодиод, к тому же — штука тонкая. Буквально. В его структуре имеются слои толщиной в считанные нанометры, образующие квантовые ямы. Диффузия и электромиграция к таким слоям безжалостны — они размывают их, создают дефекты, постепенно снижая световыход и увеличивая вероятность катастрофы в масштабах крохотного кристалла, в котором, к слову, выделяется световая и тепловая энергия, удельное значение которой в расчете на кубический сантиметр p-n перехода можно сравнить разве что с ядерным взрывом (немного утрировано, но сами прикиньте плотность энерговыделения). Чем светодиод горячее, тем все эти негативные процессы будут идти быстрее. А он, как мы уже в курсе, греется. Греется даже тогда, когда через него идет ток в 10 миллиампер. А тем более — когда это мощный прибор, ток через который как минимум 100 мА, а бывает — и ампер, и даже три ампера. И в тепло, не смотря на всю энергетическую эффективность светодиодов, переходит значительная доля от подведенной к светодиоду электроэнергии. От двух третей до трех четвертей.
А куда охлаждаться светодиодам в светодиодной лампочке? А некуда, по большому счету. Светодиод сам по себе спроектирован, чтобы его можно было охлаждать. Кристалл припаян к массивному основанию из меди или высокотеплопроводной керамики, у этого основания есть специальная площадка для пайки к внешнему теплоотводу, в роли которой — плата с алюминиевой или медной подложкой. А подложка эта, по идее, должна быть через термопасту прикручена к хорошему радиатору с большой площадью. А прикручена она в лучшем случае к металлическому корпусу светодиодной лампы, площадь которого совершенно недостаточна для рассеивания более чем нескольких ватт тепла, да еще и в закрытом плафоне. В худшем — корпус вообще пластмассовый, и в этот корпус еще попадает тепло от драйвера и от не вышедшего наружу и потерявшегося в недрах лампочки света. Вот и жарятся светодиоды при температуре, превышающей 100, а то и 130°С. И, кстати, не только светодиоды, но и драйвер, который тоже нередко выходит из строя.
Что делать-то?
Одно из трех. Либо мы, оставив на месте старую люстру, ставим в нее лампочки меньшей мощности. Они меньше будут греться и у них больше шансов прожить долго. Разумеется, в комнате станет темно: мы вернемся во времена, когда в люстре из экономии и пожаробезопасности стояли лампочки по 25 ватт, от которых ушли, поставив на их место пятнадцативаттные энергосберегайки, сделавшие из темной берлоги светлое помещение, в котором приятно находиться.
Либо мы покупаем новую люстру, в которую можно вкрутить больше лампочек. Так мы останемся со светлой комнатой и получим (возможно) более долгую жизнь лампочек. Только на люстру, как и на лампочки, придется потратиться.
И, наконец, третий вариант: мы забываем само понятие «светодиодная лампа», как страшный сон и ставим на место люстры специально спроектированный светодиодный светильник. Продуманный и в плане хорошего использования светового потока (у светодиодных ламп типа «висит груша — нельзя скушать» с этим в приборах, рассчитанных на лампы накаливания, не всегда хорошо — они плоховато светят вбок и назад), и в плане качественного охлаждения.
Рынок
На рынке есть такие светильники. Но по большей части они во-первых, дорогие, а во вторых — страшные. Этакие промышленные штуковины, которые уместны в гараже, цеху, в торговом зале гипермаркета, в офисе, наконец — но не в квартире. Нет, есть и красивые, и дизайнерские очень эффектно выглядящие светильники. Но — во-первых, опять же, цена, а во-вторых, в жертву дизайну принесено охлаждение.
Так, классическая китайская светодиодная люстра-блин — это пятьдесят ватт светодиодов, сидящих на алюминиевой плате в виде кольца диаметром 45 см и шириной сантиметров 8. И — все. Никакого тебе корпуса с оребрением, ничего. И опять-таки, плата в почти наглухо закрытом корпусе. Ну хоть драйвер чуть наружу вынесен. Вердикт: жить будет, как светодиодная лампочка. Только когда сдохнет, менять придется не лампочку за 150 рублей, а люстру за пять-десять тысяч.
В общем, выход, кажется, один: умелые руки.
Самодельный светильник: проектирование
Сразу скажу: светильник будет не на светодиодной ленте и без блютуса.
Для начала, оценим, сколько нам нужно света. Тут дело вкуса, но я люблю, когда в жилище светло. Всякий интимный полумрак я люблю в особых случаях, в романтичной обстановке, но в обычной жизни он навевает тоску. Считать можно по-всякому, но я воспользуюсь тем фактом, что с люстрой с пятью энергосберегайками по 15 ватт, дававшими каждая по 950 лм, в комнате было хорошо. То есть 5 килолюмен нам будет достаточно. Теперь идем на сайт Cree, находим там Datasheet на модули CXA2530. Почему именно на них? Да потому что у меня есть несколько штук таких модулей, и с ними удобно работать: к ним просто припаиваются провода, а сами модули сажаются прямо на радиатор с помощью прилагающегося фланца. А еще их несложно купить — известный китайский интернет-магазин в помощь. У имеющихся у меня модулей бин светового потока Т4, это соответствует номинальному световому потоку 3440-3680 лм. Сразу 20% от этой цифры отнимаем — они потеряются на рассеивателе. Получаем световой поток 2750-2950 лм, а учитывая, что получается этот поток при мощности около 30 Вт, получаем потребную для освещения мощность (подведенную к светодиодам) около 50 Вт. Поскольку комната у нас длинная, мы уберем люстру из центра и сделаем два одинаковых светильника по 25 ватт.
Приняв КПД светодиодов за 25% (достаточно консервативная оценка — скорее всего, лучше, но уж точно не хуже), выясняем, что в каждом светильнике выделяется 18,75 Вт тепла. И наша задача — выбрать под это тепловыделение радиатор. Вот как мы это сделаем.
Будем исходить из максимальной температуры кристалла = 85°C и температуры окружающей среды
= 35°C. То есть
= 50°C. Перепад температуры пропорционален рассеиваемой мощности, а коэффициент пропорциональности называется тепловым сопротивлением:
, и измеряется оно в кельвинах (или градусах цельсия) на ватт. В нашем случае тепловое сопротивление кристалл-окружающая среда должно быть равно 2 °С/Вт.
Из чего же состоит тепловое сопротивление? Первый его компонент — это тепловое сопротивление, присущее самому корпусу светодиода. Фирма Cree не дает эту величину в даташите напрямую, предлагая воспользоваться странным графиком, но в ранних публикациях в журналах о выпуске новых светодиодных матриц указывалось значение 0,8 °С/Вт.
Второй компонент общей величины теплового сопротивления — это сопротивление, создаваемое слоем термопасты между корпусом и радиатором. В качестве термопасты мы возьмем старый-добрый Алсил-3, с теплопроводностью = 1,7-2 Вт/м*К. При слое пасты толщиной 50 мкм и площади теплорассеивающей поверхности 2,8
(площадь круга диаметром 19 мм под излучающей поверхностью матрицы) получаем
= 0,105 °С/Вт.
Итак, на радиатор у нас остается 1,1 °С/Вт. Исходя из этой цифры, выбираем радиатор, накинув процентов 30 «на вранье», на растекание тепла от маленькой матрицы и на то, что радиатор будет неоптимально ориентирован в пространстве. Например, нам подойдет профиль АВМ-076 размером сечения 176х40 мм с тепловым сопротивлением куска длиной 100 мм 0,5 °С/Вт. Нам хватит куска этого профиля длиной 80-100 мм. 100 мм — это стандартные куски, имеющиеся в продаже, 80 нужно заказывать у производителя (Виртуальная механика, virtumech.ru), такой вариант выглядит несколько более эстетичным за счет меньшей ширины.
Осталось выбрать драйвер. Критерии для его выбора — это ток и рабочие пределы выходного напряжения. Мощность 25 Вт получается при токе около 0,7 А, напряжение на матрице при этом составит около 35-36 В.
Конструкция
Перебрав несколько вариантов конструкции светильника, я остановился на рассеивателе из матового полупрозрачного пластика, имеющем вид полуцилиндра. Форма эта получается простейшим способом — за счет крепления изогнутой пластины к боковым сторонам радиатора. Способ крепления достаточно произволен — на винтах с прижимными пластинами, на клею — я воспользовался красным двусторонним скотчем «Момент». В качестве рассеивателя я применил рассеивающую пленку из подсветки разбитого ЖК монитора — она имеет очень хорошее светопропускание. Можно также заматировать абразивом пленку для печати на лазерном принтере или любую другую плотную пластиковую пленку.
Матрица с предварительно припаянными проводами устанавливается с помощью комплектного фланца в центре радиатора с помощью двух винтов М3 (гайки использовать неудобно, так что придется поработать метчиком). Перед приклеиванием рассеивателя свободную от матрицы плоскую поверхность радиатора рекомендуется оклеить алюминиевым скотчем или окрасить белой краской — это снизит потери света.
По поводу термопасты — хотелось бы заметить, что использование темной термопасты не рекомендуется: она процентов на 10 снизит световой поток. Я это хорошо заметил на двух экземплярах, один из которых я сделал с Алсилом-3, а на второй алсила не хватило и я воспользовался пастой из комплекта кулера фирмы Scythe, имевшей темно-серый цвет. Разница при измерении люксметром очевидна. Также нет смысла использовать более дорогие, чем алсил, термопасты с большей теплопроводностью: и на алсиле падает в худшем случае пара-тройка градусов, погоды они не сделают.
После сборки первого светильника (в котором я использовал радиатор от процессора Pentium II и который поселился в кухне, у него чуть меньшая мощность в районе 15 Вт), я принял решение ставить в светильники для комнаты не одну матрицу, а две — это «размазало» пятно света на рассеивателе и сделало свет более комфортным. Более разумно было бы в таком случае ставить менее мощные модули, скажем, CXA1820. Модули соединил параллельно, нежелательных последствий в виде неравномерного распределения тока между ними это не вызвало — обе матрицы светятся на глаз одинаково. Но длину подводящих проводов я на всякий случай выровнял.
Крепление к потолку у меня — с помощью коромысла из жесткой стальной проволоки диаметром 2 мм, концы которого продеты в отверстия в крайних ребрах радиатора и загнуты. За центр коромысла зацеплен крючок, прикрепленный к потолку — такой длины, чтобы между натяжным потолком и радиатором оказалось расстояние в пару сантиметров. Драйвер спрятан за натяжным потолком. Если бы светильники делались до потолка, можно было бы в него запрятать и радиаторы.
Поверхность радиатора можно покрасить в черный цвет перманентным маркером или тонким слоем из баллончика (толстым не надо — теплоизоляция). А можно и не красить, глаза он особо не мозолит.
Результаты
Светло. Под лампами на высоте столешницы — 450 лк, в середине комнаты 380 лк. Свет комфортный, цветопередача — вполне (правда, на кухне оказалось, что сырое мясо под этим светом выглядит, как-будто его слегка подкрасили черничным соком). Радиаторы после многочасовой работы теплые, но не горячие. Мерцание равно нулю (заслуга качественных драйверов).
И по ценам: матрицы обошлись в 550 рублей каждая (курс с тех пор, конечно, поменялся), радиаторы — по 600 рублей, драйвера — по 250 рублей, пленка досталась бесплатно. Итого — 2200+1200+500 = 3900 рублей. Плюс два-три часа работы.
Источник