Бестрансформаторные Схемы Питания
Без трансформаторная Концепция Электропитания
Без трансформаторная концепция работает с использованием высоковольтного конденсатора для снижения переменного тока сети до требуемого более низкого уровня, необходимого для подключенной электронной схемы или нагрузки.
Спецификация этого конденсатора выбрана с запасом. Пример конденсатора, который обычно используется в схемах без трансформаторного питания, показан ниже:
Этот конденсатор соединен последовательно с одним из входных сигналов переменного напряжения АС.
Когда сетевой переменный ток входит в этот конденсатор, в зависимости от величины конденсатора, реактивное сопротивление конденсатора вступает в действие и ограничивает переменный ток сети от превышения заданного уровня, указанным значением конденсатора.
Однако, хотя ток ограничен, напряжение не ограниченно, поэтому, при измерении выпрямленного выхода без трансформаторного источника питания, обнаруживаем, что напряжение равно пиковому значению сети переменного тока , это около 310 В.
Но поскольку ток достаточно понижен конденсатором, это высокое пиковое напряжение стабилизируется с помощью стабилитрона на выходе мостового выпрямителя.
Мощность стабилитрона должна быть выбрана в соответствии с допустимым уровнем тока конденсатора.
Преимущества использования без трансформаторной схемы питания
Дешевизна и при этом эффективность схемы для маломощных устройств.
Без трансформаторная схема питания, описанная здесь, очень эффективно заменяет обычный трансформатор для устройств, мощностью тока ниже 100 мА.
Здесь высоковольтный металлизированный конденсатор использован на входном сигнале для понижения тока сети
Схема показанная выше может быть использована как источник электропитания DC 12 В для большинства электронных схем.
Однако, обсудив преимущества вышеописанной конструкции, стоит остановиться на нескольких серьезных недостатках, которые может включать в себя данная концепция.
Недостатки без трансформаторной схемы питания
Во-первых, цепь неспособна произвести сильнотоковые выходы, что не критично для большинства конструкций.
Другим недостатком, который, безусловно, требует некоторого рассмотрения, является то, что концепция не изолирует цепь от опасных потенциалов сети переменного тока.
Этот недостаток может иметь серьезные последствия для конструкций связанных с металлическими шкафами, но не будет иметь значения для блоков, которые имеют все покрыты в непроводящем корпусе.
И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проникать через нее, что может привести к серьезному повреждению цепи питания и самой схемы питания.
Однако в предложенной простой без трансформаторной схеме питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих ступеней после мостового выпрямителя.
Этот конденсатор основывает мгновенные высоковольтные пульсации, таким образом эффективно защищая связанную электронику с ним.
Как схема работает
1. Когда сетевой вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня, определенного значением реактивного сопротивления C1. Здесь можно примерно предположить, что он составляет около 50 мА.
2. Однако напряжение тока не ограничено, и поэтому 220V может находиться на входном сигнале позволяя достигнуть последующий этап выпрямителя тока .
3. Выпрямитель тока моста выпрямляет 220V к более высокому DC 310V, к пиковому преобразованию формы волны AC.
4. DC 310V быстро уменьшен к низкоуровневому DC стабилитроном, который шунтирует его к значение согласно номинала стабилитрона. Если используется 12V стабилитрон, то и на выходе будет 12 вольт.
5. C2 окончательно фильтрует DC 12V с пульсациями, в относительно чистый DC 12V.
Цепь драйвера показанная ниже управляет лентой менее 100 светодиодов (при входном сигнале 220В), каждый светодиод рассчитан на 20мА, 3.3 В 5мм:
Здесь входной конденсатор 0.33 uF / 400V выдает около 17 ма, что примерно правильно для выбранной светодиодной ленты.
Если драйвер использовать для большего числа подобных светодиодных лент 60/70 параллельно, то просто значение конденсатора пропорционально увеличить для поддержания оптимального освещения светодиодов.
Поэтому для 2 лент включенных в параллель требуемое значение будет 0.68 uF/400V, для 3 лент заменить на 1uF / 400V. Аналогично для 4 лент должно быть обновлено до 1.33 uF / 400V, и так далее.
Важно: хотя не показан ограничивающий резистор в схеме, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой светодиодной лентой, для дополнительной безопасности. Можно вставить в любом месте последовательно с отдельными лентами.
ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УПОМЯНУТЫЕ В ЭТОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ЧРЕЗВЫЧАЙНО ОПАСНЫ ДЛЯ ПРИКОСНОВЕНИЯ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ ПЕРЕМЕННОГО ТОКА.
Источник
БЕСТРАНСФОРМАТОРНЫЕ БП НА 5, 9, 12, 24 В
Небольшие бестрансформаторные блоки питания часто используются для питания маломощных устройств от сети 220 В. Если ток потребляемый нагрузкой составляет порядка нескольких десятков миллиампер, можно легко преобразовать входное напряжение переменного тока в выходное постоянного, без необходимости использования громоздких и дорогих трансформаторов. Бестрансформаторные решения не только легче по весу и размерам, но и дешевле.
В зависимости от типа схемы бестрансформаторные источники питания делятся на две категории: емкостные и резистивные. Далее разберем характеристики каждой из этих схем. А также дадим практические советы о том, как выбрать мощность соответствующих электронных компонентов для этой схемы и какие меры следует предпринять для повышения безопасности такого источника питания.
Емкостный бестрансформаторный источник питания
Схема бестрансформаторного емкостного источника питания представлена на рисунке. Значения, указанные для компонентов, зависят от параметров схемы, формулы для расчета этих значений приведены. L и N представляют собой фазовую линию и ноль сетевого напряжения переменного тока соответственно, а Vout — это выходное напряжение от источника питания. Выходной ток обозначен как Iout.
Пусковой ток, способный повредить компоненты источника питания, ограничивается резистором R1 и реактивным сопротивлением конденсатора C1. Элемент D1 — стабилитрон, обеспечивающий стабилизацию опорного напряжения, а D2 — обычный кремниевый диод, задачей которого является выпрямление переменного напряжения. Напряжение на нагрузке остается постоянным, пока выходной ток Iout меньше или равен входному току Iin, значение которого можно рассчитать как:
Где VZ — напряжение стабилитрона, VRMS — среднеквадратичное значение входного переменного напряжения, а f — его частота. Минимальное значение Iin должно соответствовать потребляемой мощности нагрузки, а максимальное значение используется для выбора соответствующей номинальной мощности для каждого элемента. Выходное напряжение Vout можно рассчитать как:
Где VD — напряжение прямого смещения D2 — падение напряжения на диоде (обычно 0,7 В для кремниевого диода). Что касается R1, рекомендуется выбирать элемент с мощностью, по крайней мере, в 2 раза превышающей значение теоретической мощности рассеиваемой на R1 (PR1), которая определяется формулой:
Конденсатор C1, от которого происходит название схемы этого типа, следует выбирать с напряжением по крайней мере, в 2 раза превышающим напряжение сети переменного тока (400 В минимум). Диод D1 должен иметь мощность как минимум в 2 раза больше теоретического значения, определяемого по следующей формуле:
То же самое относится к мощности диода D2, где только вместо VZ теперь можно использовать постоянное значение падения напряжения, например 0,7 В для типичного кремниевого выпрямительного диода. В случае C2 обычно используется электролитический конденсатор с напряжением в 2 раза превышающим напряжение VZ.
Основными преимуществами емкостного решения перед БП на основе трансформатора являются уменьшенный размер, вес и стоимость. По сравнению с блоком резистивного типа, эта схема обеспечивает более высокий КПД. Недостатком является отсутствие гальванической развязки выходного напряжения от электросети и более высокая стоимость, чем ограничение по сопротивлению.
Резистивный бестрансформаторный источник питания
Принципиальная схема типичного бестрансформаторного резистивного источника питания показана на рисунке.
Опять же, выходное напряжение Vout остается постоянным пока ток Iout меньше или равен входному току Iin, с той лишь разницей что ограничение пускового тока теперь реализуется только резистором R1. Выходное напряжение Vout можно рассчитать по той же формуле, что и для емкостного источника питания, а входной ток Iin по следующей формуле:
Как и в предыдущем случае, компоненты должны быть выбраны со значением мощности, по крайней мере вдвое превышающим теоретическое значение, которое можно рассчитать по закону Ома (P = R х I ^ 2 для R1 и P = V х I для диодов D1 и D2). Электролитический конденсатор С2 следует выбирать как для емкостного исполнения.
Преимущество резистивного источника питания в том, что он меньше по размеру и весу по сравнению с трансформаторной схемой и является самым дешевым решением для электропитания. Но и в этом случае нет гальванической развязки от сети переменного тока, и кроме того, КПД ниже чем в емкостном решении.
Безопасность бестрансформаторных БП
Обе электросхемы имеют свои ограничения: они лишены какой-либо изоляции и защиты от сетевого напряжения, что является серьезной проблемой для безопасности. Но благодаря незначительным изменениям, можно адаптировать обе представленные схемы для реального использования и обеспечить соблюдение минимальных стандартов безопасности. Модификации включают:
- Добавление предохранителя для защиты от чрезмерного входного тока;
- Добавление варистора для защиты от переходных процессов;
- Резистор R2 (R3) подключен параллельно C1 (C3) для улучшения электромагнитной устойчивости;
- Разделение R1 на два резистора R1 и R2 для обеспечения лучшей защиты от скачков напряжения и предотвращения электрических дуг для резистивной цепи.
Для небольших нагрузок можно снизить напряжение с 220 В переменного тока до нескольких вольт (например 5, 9, 12 или 24), используя только токоограничивающий резистор, как показано на принципиальной схеме. КПД такой схемы чрезвычайно низок (1%), поскольку большая часть энергии теряется в виде тепла через резистор R1. Этот компонент действительно должен проделать большую работу чтобы снизить напряжение с 220 В до 12 В.
В этом примере этот линейный элемент рассеивает в среднем 22 Вт. Следовательно, он должен быть рассчитан не менее чем на 50 Вт. Его мощность рассеяния можно определить по формуле:
Переходные напряжения (за одну секунду) со значениями используемых компонентов показаны на графиках.
График верхний показывает, сколько времени требуется чтобы выходное напряжение достигло 12 В. Это время зависит от постоянной времени схемы, определяемой конденсатором C1. Тут время зарядки конденсатора следующее:
- C1 = 100 мкФ, T = 25 мс
- C1 = 470 мкФ, T = 130 мс
- C1 = 1000 мкФ, T = 290 мс
- C1 = 4700 мкФ, T = 1,4 сек
- C1 = 10000 мкФ, T = 3 сек
При постоянном сопротивлении нагрузки пульсации выходного напряжения зависят от емкости конденсатора С1. Чем больше емкость конденсатора, тем меньше пульсации выходного напряжения. При использовании указанных выше конденсаторов уровень пульсаций, измеренный как размах напряжения сигнала, выглядит следующим образом:
- C1 = 100 мкФ, пульсации = 1,2 Vpp
- C1 = 470 мкФ, пульсации = 261,7 mVpp
- C1 = 1000 мкФ, пульсации = 121,5 mVpp
- C1 = 4700 мкФ, пульсации = 25,3 mVpp
- C1 = 10 000 мкФ, пульсации = 11,9 mVpp
Но что более важно чем пульсация, на рисунке видно что выходное напряжение от источника питания не достигает желаемого напряжения 12 В, а только около 11,3 В.
Оказывается даже без нагрузки при подключении выходное напряжение всегда ниже 12 В. Это падение напряжения вызвано диодом D2. Помещенный в это место диод Шоттки мог бы уменьшить его, но не до нуля.
Конденсатор улучшает ситуацию
Как видно на схеме, добавление полиэфирного конденсатора последовательно с линией питания повышает эффективность. В этой конфигурации КПД уже составляет до 20%.
Поскольку максимальное напряжение на конденсаторе превышает 320 В, необходимо выбрать компонент, способный работать при напряжении не менее 600 В, как показано на рисунке.
В этой конфигурации R1 рассеивает только 0,5 Вт, но всегда лучше использовать его с номинальной мощностью не менее 2 Вт. Конденсатор C2 действует как резистор и имеет некоторую емкость при 50 Гц. Более конкретно емкость конденсатора на частоте f определяется по следующей формуле:
Из приведенной формулы конденсатор C2 имеет реактивное сопротивление 6772 Ом при 50 Гц, но, в отличие от резистора он не выделяет тепла. Выходное напряжение схемы также составляет 12 В за вычетом падения напряжения на диоде D1.
Рекомендации по проектированию БП
Когда цепь отключена, конденсатор C2 может оставаться заряженным в течение длительного времени. Рекомендуется подключать резистор с высоким сопротивлением параллельно этому элементу, как показано на рисунке. Этот резистор, например сопротивлением 470 кОм, не влияет на нормальную работу схемы. В стандартных условиях он рассеивает около 100 мВт тепла. Полный разряд конденсатора С2 происходит примерно за 1 секунду, но уже через 0,4 секунды значение напряжения на этом элементе станет не опасным для человека.
Следует отметить, что R2 должен быть рассчитан на работу при таком высоком напряжении. Поэтому обычно используются два или более обычных резистора мощностью 1/4 Вт, соединенных последовательно (для увеличения максимального напряжения пробоя).
Что касается последовательного резистора с токоограничивающим конденсатором, резистор нельзя полностью заменить перемычкой, потому что при подключении блока питания к сети можно словить вершину синусоиды и реактивное сопротивление конденсатора будет порядка не килоом, а единиц Ом. Резистор — это защита от такой «удачи». В свою очередь, большой резистор означает большие потери мощности и даже более низкий КПД.
Вот относительно мощный блок питания, сделанный для тока 150 мА 24 В. Помимо токоограничивающих элементов и разрядного резистора (C 2,5 uF, R 51R и 1M), на плате есть диодный мост, стабилитрон 24V и конденсатор фильтра 100 uF.
В общем самые большие преимущества бестрансформаторного источника питания можно увидеть, когда токовые требования составляют до 30 мА, тогда конечно вес, количество элементов, простота эксплуатации сделают разумным выбор такой схемы. Но всегда помните про отсутствие гальванической развязки с сетью 220 В!
Источник