- Регулируемый блок питания своими руками
- Простой БП своими руками
- Как сделать блок питания на 12 вольт своими руками — примеры схем
- Виды блоков питания
- Где используется источник напряжения
- Схема трансформаторного БП
- Выбор трансформатора
- Самостоятельная намотка трансформатора
- Подбор готового трансформатора
- Выбор диодов и изготовление выпрямителя
- Емкость конденсатора
- Стабилизация выходного напряжения
- Увеличение выходного тока стабилизатора
- Схема с транзистором структуры n-p-n
- Схема с транзистором p-n-p
- Параметрический стабилизатор
- Регулирование выходного напряжения
- Компоновка прибора
Регулируемый блок питания своими руками
Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.
Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ
Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.
Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.
А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.
Схема регулируемого блока питания с защитой от КЗ на LM317
Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.
Печатная плата регулируемого блока питания на регуляторе напряжения LM317
Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.
Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.
А теперь самое интересное… Испытания блока питания на прочность.
Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.
Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.
Схема подключения вентилятора к блоку питания
Что будет с блоком питания при коротком замыкании?
При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.
Радиодетали для сборки регулируемого блока питания на LM317
- Стабилизатор напряжения LM317
- Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
- Конденсатор С1 4700mf 50V
- Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
- Переменный резистор Р1 5К
- Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками
Источник
Простой БП своими руками
Вот и собрано очередное устройство, теперь встаёт вопрос от чего его питать? Батарейки? Аккумуляторы? Нет! Блок питания, о нём и пойдёт речь.
Схема его очень проста и надёжна, она имеет защиту от КЗ, плавную регулировку выходного напряжения.
На диодном мосте и конденсаторе C2 собран выпрямитель, цепь C1 VD1 R3 стабилизатор опорного напряжения, цепь R4 VT1 VT2 усилитель тока для силового транзистора VT3, защита собрана на транзисторе VT4 и R2, резистором R1 выполняется регулировка.
Трансформатор я брал из старого зарядного от шуруповерта , на выходе я получил 16В 2А
Что касается диодного моста (минимум на 3 ампера), брал его из старого блока ATX также как и электролиты, стабилитрон, резисторы.
Стабилитрон использовал на 13В, но подойдёт и советский Д814Д.
Транзисторы были взяты из старого советского телевизора, транзисторы VT2, VT3 можно заменить на один составной например КТ827.
Резистор R2 проволочный мощностью 7 Ватт и R1 (переменный) я брал нихромовый, для регулировки без скачков, но в его отсутствии можно поставить обычный.
Состоит из двух частей: на первой собран стабилизатор и защита и, а на второй силовая часть.
Все детали монтируются на основной плате (кроме силовых транзисторов), на вторую плату припаяны транзисторы VT2, VT3 их крепим на радиатор с использованием термопасты, корпуса (коллекторы) изолировать ненужно .Схема повторялась много раз в настройке не нуждается. Фотографии двух блоков приведены ниже С большим радиатором 2А и маленьким 0,6А.
Индикация
Вольтметр: для него нам нужен резистор на 10к и переменный на 4,7к и индикатор я брал м68501 но можно и другой. Из резисторов соберём делитель резистор на 10к не даст головке сгореть, а резистором на 4,7к выставим максимальное отклонение стрелки.
После того как делитель собран и индикация работает нужно от градуировать его , для этого вскрываем индикатор и наклеиваем на старую шкалу чистую бумагу и вырезаем по контуру, удобнее всего обрезать бумагу лезвием.
Когда все приклеено и высохло, подключаем мультиметр параллельно нашему индикатору, и всё это к блоку питания, отмечаем 0 и увеличиваем напряжение до вольта отмечаем и т.д.
Амперметр: для него берём резистор на 0,27 ома . и переменный на 50к, схема подключения ниже, резистором на 50к выставим максимальное отклонение стрелки.
Градуировка такая-же только изменяется подключение см ниже в качестве нагрузки идеально подходит галогеновая лампочка на 12 в.
Источник
Как сделать блок питания на 12 вольт своими руками — примеры схем
Источник постоянного напряжения на 12 вольт – полезный прибор для дома, дачи или гаража. Такое устройство несложно сделать самостоятельно. Ниже приведена схема блока питания 12В для сборки своими руками, а также советы по расчету и выбору комплектующих.
Виды блоков питания
На сегодняшний день широкое распространение получили импульсные источники напряжения. Перед традиционными трансформаторными схемами они имеют значительное преимущество в энергоэффективности и в массогабаритных показателях. Считается, что при токах нагрузки более 5 ампер они имеют неоспоримые преференции. Но им присущи и недостатки – например, генерация ВЧ-помех в питающую сеть и в нагрузку. А главное препятствие для домашней сборки – сложность схем и необходимость специальных навыков для изготовления намоточных деталей. Поэтому домашнему мастеру средней квалификации лучше заняться изготовлением блока питания по обычному принципу с сетевым понижающим трансформатором.
Где используется источник напряжения
Область применения такого БП в домашнем хозяйстве широка:
- питание низковольтных светильников;
- зарядка аккумуляторных батарей;
- питание звуковоспроизводящих устройств.
А также многие другие цели, для которых требуется постоянное напряжение 12 вольт.
Схема трансформаторного БП
Схема блока питания на 12 вольт, работающего от сети 220 В, состоит из следующих узлов:
- Понижающий трансформатор. Состоит из железа, первичной и вторичной (их может быть несколько) обмоток. Не вдаваясь глубоко в принцип действия, надо отметить, что выходное напряжение зависит от соотношения витков первичной (n1) и вторичной (n2) обмоток. Для получения 12 вольт надо, чтобы вторичная обмотка содержала в 220/12=18,3 раза меньше витков, чем первичная.
- Выпрямитель. Чаще всего выполняется в виде двухполупериодной схемы (диодного моста). Преобразует переменное напряжение в пульсирующее. Ток за период дважды проходит через нагрузку в одном направлении.
В последующих разделах рассмотрен порядок выбора и расчета каждого элемента источника постоянного напряжения на 12 вольт.
Выбор трансформатора
Для получения подходящего трансформатора возможны два пути. Самостоятельное изготовление понижающего блока и подбор подходящего в заводском исполнении. В любом случае надо иметь в виду:
- на выходе понижающей обмотки трансформатора при замере напряжения вольтметр покажет эффективное напряжение (в 1,4 раза меньше амплитудного);
- на фильтрующем конденсаторе без нагрузки постоянное напряжение будет примерно равным амплитудному (говорят, что на конденсаторе напряжение «поднимается» в 1,4 раза);
- если стабилизатор отсутствует, то под нагрузкой напряжение на емкости просядет в зависимости от тока;
- для работы стабилизатора нужно определенное превышение входного напряжения над выходным, их соотношение ограничивает КПД блока питания в целом.
Из двух последних пунктов следует вывод, что для нормальной работы БП напряжение трансформатора должно превышать 12 В.
Самостоятельная намотка трансформатора
Полный расчет и изготовление самодельного силового трансформатора сложны, трудоемки, требуют инструментов и навыков. Поэтому будет рассмотрен упрощенный путь – подбор подходящего по железу блока и переделка его на 12 В.
Если есть готовый трансформатор, но нет схемы его подключения, надо вызвонить тестером его обмотки. Обмотка с самым большим сопротивлением скорее всего будет сетевой. Остальные обмотки надо удалить.
Далее надо измерить толщину набора железа b и ширину центральной пластины a и перемножить их. Получится площадь сечения сердечника S=a*b (в кв.см.). Она определяет мощность трансформатора P=. Дальше вычисляется максимальный ток в амперах, который можно снять с обмотки с напряжением 12 вольт: I=P/12.
Дальше вычисляется число витков на вольт по формуле n=50/S. Для 12 вольт надо намотать 12*n витков с запасом около 20% на потери в меди и на стабилизаторе. А если его нет, то на падение напряжения под нагрузкой. И последним шагом выбирается сечение провода намотки по графику для плотности тока 2-3 ма/кв.мм.
Например, имеется трансформатор с первичной обмоткой на 220 В с набором железа толщиной 3,5 см и шириной среднего язычка 2,5 см. Значит, S=2,5*3,5=8,75 и мощность трансформатора =3 Вт (приблизительно). Тогда максимально возможный ток при 12 вольтах I=P/U=3/12=0,25 А. Для намотки можно выбрать провод диаметром 0,35..0,4 кв.мм. На 1 вольт приходится 50/8,75=5,7 витков, надо намотать 12*5,7=33 витка. С учетом запаса – около 40 витков.
Подбор готового трансформатора
Если есть готовый трансформатор с подходящей по току и напряжению вторичной обмоткой, можно попробовать подобрать готовый. Например, в серии ТПП есть подходящие изделия с напряжением вторичных обмоток, близким к 12 вольтам.
Трансформатор | Обозначение выводов вторичной обмотки | Напряжение, В | Допустимый ток, А |
ТПП48 | 11-12, 13-14, 15-16, 17-18 | 13,8 | 0,27 |
ТПП209 | 11-12, 13-15 | 11,5 | 0,0236 |
ТПП216 | 11-12, 13-14, 15-16, 17-18 | 11,5 | 0,072 |
Плюс этого решения – минимальная трудоемкость и надежность заводского исполнения. Минус – трансформатор содержит и другие обмотки, габаритная мощность рассчитана и на их нагрузку. Поэтому в массогабаритных показателях такой трансформатор будет проигрывать.
Выбор диодов и изготовление выпрямителя
Диоды в выпрямитель выбираются по трем параметрам:
- наибольшее допустимое прямое напряжение;
- наибольшее обратное напряжение;
- наибольший рабочий ток.
По первым двум параметрам для работы в 12-вольтовой схеме подойдут 90 процентов доступных полупроводниковых приборов, выбор в основном делается по предельному длительно допустимому току. От этого параметра также зависит исполнение корпуса диода и способ изготовления выпрямителя.
Если ток нагрузки не будет превышать 1 А, можно применить зарубежные и отечественные одноамперные диоды:
- 1N4001-1N4007;
- HER101-HER108;
- КД258 (“капелька”);
- КД212 и другие.
На меньшие токи (до 0,3 А) рассчитаны приборы КД105 (КД106). Все перечисленные диоды можно монтировать как вертикально, так и горизонтально на печатную или монтажную плату, или просто на штырьки. Радиаторов им не нужно.
Если нужны большие рабочие токи, то надо применять другие диоды (КД213, КД202, КД203 и т.д.). Эти приборы рассчитаны для эксплуатации на теплоотводящих радиаторах, без них они выдержат не более 10% от максимального паспортного тока. Поэтому надо подобрать готовые теплоотводы или сделать их самостоятельно из меди или алюминия.
Также удобно использовать готовые мостовые диодные сборки КЦ405, КВРС или подобные. Их не надо собирать – достаточно подать на соответствующие выводы переменное напряжение и снять постоянное.
Емкость конденсатора
Емкость конденсатора зависит от нагрузки и от пульсаций, которые она допускает. Для точного расчета емкости существуют формулы и онлайн-калькуляторы, которые можно найти в интернете. Для практики можно ориентироваться на цифры:
- при малых токах нагрузки (десятки миллиампер) емкость должна быть 100..200 мкФ;
- при токах до 500 мА нужен конденсатор 470..560 мкФ;
- до 1 А – 1000..1500 мкФ.
Для больших токов емкость увеличивается пропорционально. Общий же подход – чем больше конденсатор, тем лучше. Увеличивать его емкость можно до любых пределов, ограничиваясь лишь габаритами и стоимостью. По напряжению надо брать конденсатор с серьезным запасом. Так, для 12-вольтового выпрямителя лучше взять элемент на 25 вольт, чем на 16.
Эти рассуждения верны для нестабилизированных источников. Для БП со стабилизатором емкости можно уменьшать в разы.
Стабилизация выходного напряжения
Стабилизатор на выходе блока питания нужен не всегда. Так, если предполагается использование БП совместно со звуковоспроизводящей аппаратурой, то на выходе надо иметь стабильное напряжение. А если нагрузкой служит нагревательный элемент – стабилизатор явно излишен. Для питания светодиодной ленты можно обойтись без самого сложного модуля БП, но с другой стороны стабильное напряжение обеспечивает независимость яркости свечения при перепадах в сети и продлевает срок службы LED-светильника.
Если решение об установке стабилизатора принято, то проще всего собрать его на специализированной микросхеме LM7812 (КР142ЕН5А). Схема включения проста и не требует наладки.
На вход такого стабилизатора можно подавать напряжение от 15 до 35 вольт. На входе должен быть установлен конденсатор С1 емкостью не менее 0,33 мкФ, на выходе не менее 0,1 мкФ. В качестве С1 обычно выступает конденсатор блока фильтров, если длина соединительных проводов не превышает 7 см. Если такую длину выдержать не удается, то потребуется установка отдельного элемента.
Микросхема 7812 имеет защиту от перегрева и короткого замыкания. Но она не любит переполюсовки на входе и подачи внешнего напряжения на выход – время ее в жизни в таких ситуациях исчисляется секундами.
Важно! Для тока нагрузки свыше 100 мА установка интегрального стабилизатора на теплоотводящий радиатор обязательна!
Увеличение выходного тока стабилизатора
Приведенная схема позволяет нагружать стабилизатор током до 1,5 А. Если этого недостаточно, можно умощнить узел дополнительным транзистором.
Схема с транзистором структуры n-p-n
Эта схема рекомендуется разработчиками и включена в даташит на микросхему. Выходной ток не должен превышать наибольший ток коллектора транзистора, который должен быть обязательно снабжен теплоотводом.
Схема с транзистором p-n-p
Если полупроводниковый триод структуры n-p-n отсутствует, то можно умощнить стабилизатор полупроводниковым триодом p-n-p.
Кремниевый маломощный диод VD увеличивает выходное напряжение 7812 на 0,6 В и компенсирует падение напряжения на эмиттерном переходе транзистора.
Параметрический стабилизатор
Если по какой-либо причине интегральный стабилизатор недоступен, можно выполнить узел на стабилитроне. Надо выбрать стабилитрон с напряжением стабилизации 12 В и рассчитанный на соответствующий ток нагрузки. Наибольший ток для некоторых 12-вольтовых отечественных и импортных стабилитронов указан в таблице.
Тип стабилитрона | Д814Г | Д815Д | КС620А | 1N4742A | BZV55C12 | 1N5242B |
Ток нагрузки | 5 мА | 0,5 А | 50 мА | 25 мА | 5 мА | 40 мА |
Напряжение стабилизации | 12 вольт |
Номинал резистора рассчитывается по формуле:
R= (Uвх min-Uст)/(Iн max+Iст min), где:
- Uвх min – минимальное входное нестабилизированное напряжение (должно быть не менее 1,4 Uст), вольт;
- Uст – напряжение стабилизации стабилитрона (справочная величина), вольт;
- Iн max – наибольший ток нагрузки;
- Iст min – минимальный ток стабилизации (справочная величина).
Если стабилитрон на нужное напряжение отсутствует, его можно составить из двух последовательно включенных. При этом суммарное напряжение должно быть 12 В (например, Д815А на 5,6 вольта плюс Д815Б на 6,8 вольт дадут 12,4 В).
Важно! Соединять стабилитроны (даже однотипные) параллельно «для увеличения тока стабилизации» нельзя!
Умощнить параметрический стабилизатор можно тем же способом – включением внешнего транзистора.
Для мощного транзистора надо предусмотреть радиатор. Напряжение питания в этом случае будет меньше Uст стабилитрона на 0,6 В. При необходимости выходное напряжение можно подкорректировать в большую сторону включением кремниевого диода (или цепочки диодов). Каждый элемент в цепочке будет увеличивать Uвых примерно на 0,6 В.
Регулирование выходного напряжения
Если напряжение блока питания надо регулировать от нуля, то оптимальной схемой будет параметрический стабилизатор с добавлением переменного резистора.
Резистор в 1 кОм, включенный между базой транзистора и общим проводом, защитит триод от выхода из строя при обрыве цепи движка потенциометра. При вращении ручки переменного резистора напряжение на базе транзистора будет меняться от 0 до Uст стабилитрона с отставанием примерно в 0,6 вольт. Надо учитывать, что параметры узла будут хуже из-за использования потенциометра – наличие движущегося контакта (даже хорошего качества) неизбежно снизит стабильность напряжения на базе транзистора.
Добиться регулирования от 0 до 12 вольт схемы с интегральным стабилизатором серии 78XX намного сложнее. Если достаточно диапазона регулирования от 5 до 12 В, можно применить микросхему 7805 и включить ее по схеме с потенциометром. Стабилитрон должен быть на напряжение около 7 вольт (КС168 с диодом или без него, КС175 и т.п.). В нижнем положении движка потенциометра вывод GND соединяется с общим проводом, и на выходе будет 5 вольт. При смещении движка к верхнему выводу напряжение на нем будет расти вплоть до Uст стабилитрона и складываться с напряжением стабилизации микросхемы.
Можно применить микросхему LM317. Она также имеет три вывода и специально разработана для создания регулируемых источников. Но у этого стабилизатора нижний порог напряжения начинается от 1,25 вольт. В интернете много схем на LM317 с регулировкой от нуля, но 90+ процентов этих схем неработоспособны.
Компоновка прибора
После того, как все узлы будут подобраны, или будет присутствовать четкое представление о том, какими они будут, можно приступать к компоновке прибора. Также важно понимать, каким будет будущий корпус устройства. Можно подобрать готовый, можно сделать самому при наличии материалов и навыков.
Особых правил компоновки узлов внутри корпуса нет. Но желательно расположить узлы так, чтобы они соединялись проводниками последовательно, как на схеме, и по кратчайшему расстоянию. Выходные клеммы лучше расположить на стороне, противоположной сетевому кабелю. Выключатель питания и предохранитель лучше закрепить на задней стенке устройства. Для рационального использования межкорпусного пространства часть узлов можно установить вертикально, но диодный мост лучше закрепить горизонтально. При вертикальном монтаже конвекционные потоки горячего воздуха от нижних диодов будут обтекать верхние элементы и дополнительно их нагревать.
Для тех кто не понял смотрим видео: Простой блок питания своими руками.
Собрать источник питания постоянного тока с фиксированным питанием несложно. Это по силам мастеру средней руки, нужны лишь элементарные познания в электротехнике и минимальные навыки монтажа.
Источник