- Автомобильный блок питания для компьютера своими руками
- ATX-совместимый БП компьютера для автомобиля
- Питание компьютера от бортовой сети автомобиля.
- Как из старого блока питания компьютера сделать зарядное устройство
- Схема ЗУ
- Самостоятельное изготовление устройства
- Подготовка радиодеталей
- Простой зарядник для автомобильных аккумуляторов 12 вольт
- Зарядное устройство с регулировкой тока
- Тестирование переделки
Автомобильный блок питания для компьютера своими руками
Часто случается так, что с собой приходится брать ПК (имеется ввиду переносное устройство, такое как ноутбук) и активно его использовать. Возможно, по работе или в поездке на море, в горы и т.д. Как бы там ни было – но ни один встроенный аккумулятор не может держаться вечно, чаще всего это 2-6 часов активной работы ноутбука.
Крайне логичной кажется мысль использовать в качестве источника напряжения бортовую сеть автомобиля. Многие производители даже предлагают готовые блоки питания для портативных компьютеров (ультрабуков, нетбуков и ноутбуков). Но мы попробуем разобраться в вопросе изготовления такого БП своими руками.
Несмотря на то, что переносные ПК питаются постоянным током, их спецификация далека от идеала. Здесь сложно найти универсальное решение, ведь какого-либо официального стандарта или нормы питания ноутбуков не существует.
Если смартфоны, планшеты, плееры и другая портативная техника питаются определённым напряжением, 5 В, то с ноутбуками все не так просто. Это может быть 9 В, 12 В или более.
Поэтому в первую очередь необходимо ознакомиться с техническими параметрами «родного» сетевого блока питания, чтобы понимать какой ток и напряжение подаётся в ноутбук.
В качестве примера.
Рис. 1. Технические параметры сетевого блока питания
Здесь значится напряжение 18,5 В, сила тока – 3,5А.
Теперь проанализируем, что можно получить в бортовой сети авто.
Напряжение в разъёме прикуривателя -12-13 В (возможны колебания при работающем двигателе) и сила тока – до 16 А (показатель весьма усреднённый, ведь максимальное значение зависит от конфигурации генератора автомобиля и параллельно работающих устройств, таких как сплит-система, подогрев сидений, стёкол и т.п.).
Если сила тока нас более чем устраивает, то остаётся привести в норму только напряжение. Этим мы и займёмся.
Если уже собранный блок питания стоит в районе 1,5 тыс. р., то готовая плата преобразователя обойдётся где-то 300-400 р.
Всё что останется сделать – упаковать её в корпус и подключить кабели.
Нужен стабилизатор повышающий с 10 на 18 Вольт. Английское название (для поиска на иностранных торговых площадках) — DC-DC 10-32V to 12-35V 150W Boost Adjust Module Mobile Laptop Car.
Выглядит собранная плата приблизительно так.
Рис. 2. Собранная плата
С внешним корпусом может выглядеть так.
Рис. 3. Плата в корпусе
Полная сборка своими руками
Проверенная временем схема выглядит следующим образом.
Рис. 4. Схема устройства
Все номиналы обозначены на схеме. Если использовать элементы SMD, то можно добиться сверхкомпактных размеров.
Рис. 5. Внешний вид платы
При сборке с обозначенными номиналами выходное напряжение будет 16,5В, сила тока – не более 4А.
Чтобы изменить выходное напряжение, нужно подобрать номинал резистора R9.
Или сделать его переменным, как на схеме ниже.
Рис. 6. Вариант схемы устройства
В обоих схемах выше есть существенный недостаток — большую часть корпуса занимает катушка индуктивности. Дело не столько в её габаритах, сколько в процедуре намотки. Не у всех есть желание, время и возможность это сделать.
Чтобы уменьшить габариты БП и исключить намотку катушки, можно собрать его по следующей схеме.
Рис. 7. Бездроссельный вариант схемы
В основе этого БП лежит двухтактный инвертор (постоянный ток преобразуется в импульсы на частоте 25 кГц) и удвоитель напряжения.
Ток нагрузки может достигать 4,7А.
Транзисторы VT1-VT4 требуют теплоотвода. Сопротивление R1 – подстроечный резистор, с его помощью можно изменить выходное напряжение от 18 до 20 В.
Мнения читателей
Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:
Источник
ATX-совместимый БП компьютера для автомобиля
Схема блока питания форм-фактора ATX, при использовании автомобильной АКБ
В данной статье рассмотрена схема самодельного блока питания, способного поддерживать работоспособность современных материнских плат формата ATX и компьютерной периферии при использовании в качестве источника энергии автомобильной аккумуляторной батареи +12В.
В основу конструкции легла схема, опубликованная на сайте carmp3.nm.ru. Однако указанный блок питания мог нормально работать только со старыми M/B формата AT, поскольку вырабатывал лишь напряжения ±12В, +5В и сигнал Power_Good. -5В требуется для некоторых плат на основе чипсетов nVidia (старую ISA-спецификацию не рассматриваю в силу неактуальности), +3.3В для нормальной работы процессора P4. Также был реализован механизм расширенного управления питанием (теперь включать и выключать Б/П можно удаленно, по сигналу с M/B).
Рис.1 Принципиальная схема Б/П
Основу Б/П представляет ШИМ (TL494 или аналоги). Два полевых MOSFET-транзистора коммутируют постоянное напряжение 12В с аккумулятора на импульсный трансформатор TR1. Выходные напряжения снимаются с вторичных обмоток, после выпрямления на полупериодных выпрямителях D3-D12, после чего попадают на общий дроссель DR1 и на индивидуальные L-фильтры DR2-DR6.
Стабилизируется только напряжение +5В, остальные – косвенно. Обратная связь стабилизатора получена от программируемого источника опорного напряжения TL431, выходная часть схемы отвязана от входной оптопарой PC817.
Включение Б/П в бортовую сеть, а также обработку сигнала PS_ON удаленного управления осуществляет схема управления на транзисторах Q1-Q2 и реле RL1. Для уверенного срабатывания реле возможно потребуется подобрать номиналы резисторов R1-R2.
Дежурное напряжение +5В_SB генерирует интегральный стабилизатор КР142ЕН5 (или импортный аналог 7805). Это напряжение есть всегда, пока клемма подключена к аккумулятору, поэтому микросхема обязательно устанавливается на теплоотвод.
Рис.2 Топология печатной платы
Конструктивно Б/П выполнен на односторонней печатной плате размером 85×95мм, вид со стороны деталей приведен на рис.2.
Рис.3 Фотография готовой конструкции
Трансформатор мотается медным одножильным проводом в лаковой изоляции диаметром 1 мм. в 2 нитки, т.е. суммарное сечение составило около 1.5 мм2. Феррит марки М2000НМ1-36 типоразмером 45?27?12. В качестве изоляции обмоток применялась черная тряпичная изолента (лакоткани под рукой, как назло, не оказалось). Порядок намотки следующий: на заизолированный феррит плотно наматывается первичная обмотка двойным проводом в 2 косы по 6 витков в каждой. Конец первой соединяется с началом второй, это соединится с +12В АКБ (точка #3 на рис.2). Свободные концы этой обмотки подсоединятся к транзисторам Q1 и Q2 (точки #1 и #2 на рис.2). Далее наматывается слой изоляции, и укладываются вторичные обмотки. Вторичная обмотка также симметричная, состоит из 2-х половин. Каждая из половин в свою очередь состоит из 2-х отрезков в 8 и 6 витков. Обе половины соединены свободными концами 2-х 6-ти витковых обмоток (земля или точна #4 на рис.2). От стыков 8-ми и 6-ти витковых обмоток снимаются ±5В, сделаны отводы (точки #7 и #8 на рис.2). Со свободных концов снимаем ±12В (точки #5 и #6 на рис.2). Обмотка для +3.3В мотается поверх, после слоя изоляции. Она состоит из 2?7 витков (две половины, 7 витков в каждой), средней частью соединена с землей (точна #4 на рис.2). Свободные концы – к точкам #9 и #10 на рис.2. Все обмотки, естественно, мотаются в одну сторону. Т.к. пропаять такой пучок толстых проводов весьма сложно, выходы обмоток вместе с гибким монтажным проводом обжимались медными гильзами.
Общий дроссель DR1 берется от компьютерного Б/П, DR2-DR6 – оттуда же. Диоды D3 D8, D11 D12, и D5 D6 – в корпусе TO220 также выпаяны из компьютерного блока питания. Остальные диоды выпрямителя – диоды Шотки на ток 5-7 А. Оптопара также извлечена из того же Б/П, можно заменить на любую аналогичную.
Реле – любое на 12В и коммутируемый ток 20-40 А. Я взял реле из автомобильной сигнализации. Диоды D1 и D2 также любые, лишь бы подходили по току.
Диоды, полевые транзисторы и интегральный стабилизатор устанавливаются на радиатор через изолирующие прокладки. Величина тока срабатывания защитного предохранителя подбирается экспериментально, исходя из мощности имеющейся нагрузки. После отладки желательно залить всю схему в компаунд или эпоксидную смолу с целью предотвращения коррозии и механических повреждений Б/П.
Источник
Питание компьютера от бортовой сети автомобиля.
Питание компьютера от бортовой сети автомобиля (9в – 16в).
Здесь представлена методика переделки стандартного компьютерного БП ATX для питания его от +9в до +16в (бортовая сеть автомобиля). Можно использовать любой, даже низкокачественый БП ATX (всёравно, все критичные элементы будут заменены или выброшены) мощностью 250Вт и выше.
Максимальная нагрузка – 150-200Вт (в зависимости от типа применяемых транзисторов и мощности переделываемого БП).
С1- С3 – на напряжение не меньше 16в.
Q1 и Q3 – мощные p-mosfet транзисторы. На напряжение не меньше 35в. Максимальный ток – не менее 30А (IRF4905, IRF5210). Обязательно на радиатор через изолирующ.
Здесь представлена методика переделки стандартного компьютерного БП ATX для питания его от +9в до +16в (бортовая сеть автомобиля). Можно использовать любой, даже низкокачественый БП ATX (всёравно, все критичные элементы будут заменены или выброшены) мощностью 250Вт и выше.
Максимальная нагрузка – 150-200Вт (в зависимости от типа применяемых транзисторов и мощности переделываемого БП).
С1- С3 – на напряжение не меньше 16в.
Q1 и Q3 – мощные p-mosfet транзисторы. На напряжение не меньше 35в. Максимальный ток – не менее 30А (IRF4905, IRF5210). Обязательно на радиатор через изолирующую прокладку (например, слюду).
Q2 и Q4 – любые n-p-n (транзисторы (кт315, кт3102).
R1 и R3 – на 0.125 Вт
R2 и R4 – не менее 0.5 Вт.
D1 и D2 – любые, на ток не менее 2А
Фильтрующий дроссель – 7-10вит. сложенного в двое провода диаметром 0.7мм на кольце диам. от 15мм.
Подключение: точка +12 – к бортовой сети автомобиля (9В -16В), через предохранитель 20-25А.
Из БП предварительно выпаиваются высоковольтные транзисторы и конденсатор и закорачиваются точки A и B (см. на рис. участка схемы БП).
Выводы схемы подключаются к соотв. точкам рисунка участка схемы БП.
Вывод от D1 подключается на 12й вывод мс. TL494 (питание мс. ШИМ контроллера).
Вывод от D2 – на вход линейного стабилизатора +5vs (первый вывод мс. 7805) (питание стаб. дежурного режима).
Иногда необходима замена силовых диодных сборок в БП на более высоковольтные. Диод по +5 должен выдерживать не менее 35В, а по +12 не менее 75В обратного напряжения.
Нередко встречаются БП, у которых по шине 5vs не стоит кренка (7805), тогда D2 можно исключить, но необходимо дополнительно, на радиатор поставить кренку (7805), её вход — на вход +12, выход — на +5vs от БП.
Схема не нуждается в настройке.
Внимание! В доработанном БП на силовом трансформаторе высокое напряжение!
Основные правила работы с импульсниками:
1. Без нагрузки лучше не включать (может погореть).
2. все провода как можно короче делать.
3. при первом (пробном) запуске — питать через предохратиль гденить 3-4А, в качестве нагрузки, по 12В можно 2 параллельно резистора по 100 Om по 2Вт или больше на корпус повесить. И для старта БП — замкнуть зелёный на корпус (черный).
Вся схема БП ATX:
(кликните по картинке для увеличения)
Плата БП. рис2
Замечание: cхема не эксплуатировалась в реальных условиях.
PS.
В первом варианте схемы наблюдался небольшой завал фронтов, и как следствие, не самый большой КПД. Здесь предствлена двуполупериодная схема управления силовыми транзисторами.
Источник
Как из старого блока питания компьютера сделать зарядное устройство
При модернизации компьютеров блок питания в большинстве случаев подлежит замене – он уже не тянет новые нагрузки. В итоге вполне исправный источник питающего напряжения ПК остается не у дел. А у тех, кто занимается апгрейдом регулярно, скапливаются горы таких устройств без дальнейшей перспективы установки в компьютеры – мало кому сейчас нужен источник мощностью в 250-350 ватт.
Для таких БП можно найти другое применение – например, в качестве зарядного устройства для аккумуляторов. Переделка в большинстве случаев минимальна, и ее можно сделать своими руками.
Схема ЗУ
Если рассмотреть структурную схему импульсного блока питания стандарта ATX, то можно обнаружить, что это практически готовое зарядное устройство. Надо лишь удалить из нее все излишнее и добавить несложные цепи регулировки. В зарядном устройстве не понадобятся:
- схема защиты и выключения;
- выпрямители и фильтры всех напряжений, кроме канала+12 вольт.
Источник дежурного напряжения, в принципе, не нужен, но от него питается микросхема ШИМ, его надо оставить хотя бы частично. Заряжать аккумуляторы надо в режимах стабилизации напряжения или тока, поэтому придется добавить соответствующие цепи для установки необходимых уровней.
Блок питания стандарта AT содержит еще меньше избыточных цепей (в нем нет источника дежурного напряжения), но его найти сейчас не так просто.
Самостоятельное изготовление устройства
Самостоятельное изготовление зарядного устройства надо начать с поиска принципиальной схемы на имеющийся блок питания. В этом поможет интернет. Чем точнее будет совпадение реального устройства со схемой, тем лучше. Далее надо определить, какого типа ЗУ нужно (со стабилизацией напряжения или дополнительно со стабилизацией тока). После этого можно приступать к анализу работы схемы и планировать переделки.
Подготовка радиодеталей
Радиодеталей понадобится по минимуму:
- два потенциометра для регулировки тока и напряжения (продаются в любом магазине или в интернете), а если режим стабилизации тока не планируется, хватит и одного;
- несколько выводных (true hole) резисторов мощностью 0,25 Вт (возможно, найдутся среди удаляемых элементов);
- две клеммы для присоединения проводов достаточного сечения (желательно, красного и черного цвета);
- провода для соединений.
Еще понадобятся вольтметр и амперметр для индикации выходных параметров. Можно применить стрелочные, можно современные цифровые (но не стоит уповать на их высокую точность).
Простой зарядник для автомобильных аккумуляторов 12 вольт
Свинцовые автомобильные аккумуляторы заряжаются в режиме постоянного напряжения (ток при этом падает). Поэтому возникает мысль изготовить зарядное устройство для такой АКБ из компьютерного блока питания. Для исправной батареи емкостью 60 А*ч нормальный ток заряда составляет 3-6 ампера, для глубоко разряженной – до 10 А при стабильном напряжении около 14 вольт. Такой ток может обеспечить даже относительно маломощный БП от компьютера (от 250 Вт).
При всем разнообразии схем исполнения БП стандарта ATX, широко распространены блоки питания на микросхемах – формирователях ШИМ TL494 (или аналогах). Пример переделки в зарядное устройство есть смысл рассмотреть для блоков, построенных на этом электронном компоненте.
В первую очередь надо удалить все лишние жгуты с разъемами. оставив один-два желтых провода (+12 вольт) и один-два черных (0 вольт).
Следующим шагом следует отключить цепи сигнала Power_ON, по которым материнская плата управляет БП. Для этого надо перерезать дорожку, идущую к выводам 13-14-15 микросхемы. После этого схема будет запускаться при подаче сетевого напряжения 220 вольт. Другой вариант – припаять перемычку между контактной площадкой зеленого провода и общей шиной.
Если есть желание, можно полностью удалить часть схемы, обведенную голубой линией. Это немного повысит энергоэффективность зарядника за счет снижения расхода на питание участка схемы и несколько улучшит тепловой режим внутри корпуса БП. Также можно удалить элементы выпрямителей ненужных напряжений. При удалении можно ориентироваться на цвет проводов из таблицы.
Цвет провода | Напряжение, В |
---|---|
Черный | 0 В (земля, общий провод) |
Красный | +5 |
Оранжевый | +3,3 |
Желтый | +12 |
Белый | -5 |
Синий | -12 |
Зеленый | +5 Power_ON |
Серый | +5 PG |
Фиолетовый | +5 Stand by (дежурное напряжение) |
Коричневый | +3,3 Sense |
Второй этап переделки – создание возможности регулировки выходного напряжения. Для компьютера надо иметь на выходе 12 вольт, для зарядного устройства побольше – до 14,5 вольт минимум. А если регулировать выходной уровень вниз, можно будет заряжать и шестивольтовые аккумуляторы. Для этого надо удалить лишние резисторы, подключенные к выводу 1 микросхемы, и установить вместо них потенциометр на 100 кОм. После этого добавится возможность настраивать уровень выходного напряжения примерно от 6 до 16 вольт, чего хватит для большинства случаев, с которыми можно столкнуться на практике.
Самый «дорогостоящий» этап (с учетом того, что все предыдущие действия практически не требуют материальных затрат) – добавление амперметра и вольтметра. Удобно использовать цифровой блок измерения тока-напряжения.
Органы регулировки и измерения надо вывести на панель получившегося зарядника, и тут дизайн ограничен только собственной фантазией. Также надо найти место для размещения клемм для подключения заряжаемого аккумулятора.
Важно! Схемы контроля уровня заряда данное устройство не имеет. Перед началом зарядки надо выставить напряжение около 14 вольт и проконтролировать зарядный ток. Если он велик (у глубоко разряженной АКБ), надо несколько уменьшить напряжение до получения тока в 6-7 ампер. По мере зарядки ток упадет, напряжение можно вновь повысить до 14-14,5 вольт. При падении зарядного тока до примерно 0,1..0,15 А, аккумулятор полностью зарядится и процедуру надо прекратить.
Зарядное устройство с регулировкой тока
Некоторые типы аккумуляторов требуют зарядки стабильным током. Такой зарядник тоже можно сделать из блока питания компьютера. Надо лишь ввести дополнительные цепи регулировки и измерения тока. В первую очередь надо оторвать средний вывод импульсного трансформатора от земли и в разрыв включить измерительный шунт – сопротивление, замеряя напряжение на котором, можно вычислить ток. Шунт можно взять от стрелочного амперметра. Лучше найти сопротивление в виде спирали – для него проще выделить место при тесном монтаже. Можно попробовать в качестве шунта использовать печатный проводник между средним выводом и общей шиной, но тут успех зависит от топологии разводки платы.
Дальше надо очистить от посторонних элементов ножки 15 и 16 микросхемы, и 16 вывод соединить с общим проводом. Верхний по схеме вывод шунта (средний вывод трансформатора) подключается к ноге 15 через резистор около 270 Ом (окончательный номинал подбирается при наладке). Для регулировки к тому же выводу 15 подключается цепь из резистора 10 кОм и потенциометра (от 1..2 до 20 кОм, какой будет под рукой). В итоге получится зарядное устройство с регулировкой напряжения и максимального тока, которое можно во многих случаях применять и в качестве лабораторного источника питания.
Тестирование переделки
До включения в сеть к зарядному устройству надо подключить нагрузку. На холостом ходу импульсный источник включать, а тем более тестировать, не рекомендуется. В качестве нагрузки удобно применять автомобильные лампы накаливания на напряжение 12 вольт и потребную мощность (для первоначальной проверки устройство можно нагрузить током 10..50% от номинала). Вместо лампочек можно применить магазин сопротивлений.
Дальше надо подготовить схему для включения источника в сеть. Для этого в разрыв одного сетевого провода надо включить лампу накаливания (подобно предохранителю). Если переделка БП прошла успешно, то при включении в сеть лампа гореть не будет или будет тускло светиться. Можно продолжать проверку дальше – лампа влияния не окажет. Если нить ярко светится, значит, в БП есть проблема, и ее надо найти и устранить. Лампа в этом случае ограничивает ток – автомат не выбьет.
Если первое включение прошло нормально, можно проверить пределы регулировки напряжения. Это можно сделать с помощью встроенного вольтметра, а еще лучше дополнительно проконтролировать напряжение мультиметром прямо на нагрузке. Если границы уровней регулирования не устраивают, можно подобрать сопротивление потенциометра до достижения нужного результата. Далее подключая больше или меньше лампочек к выходу в параллель, можно проверить границы регулировки тока. Их уточняют с помощью подбора резистора в цепи измерения (начальное значение – 270 Ом). Если все проходит штатно и результаты проверки устраивают пользователя, можно подключать аккумулятор и пробовать его заряжать.
В завершении для наглядности рекомендуем серию тематических видео.
Источник