Как сделать сварочный инвертор из компьютерного блока питания?
Время чтения: 6 минут
Инверторная сварка с применением современного аппарата – обычное дело как для профессионалов, так и для сварщиков-любителей. Инвертор есть у каждого второго дачника, и активно им используется. Но что делать, если нет средств на покупку полноценного аппарата, а варить хочется? В таких ситуациях спасает самостоятельная сборка аппарата.
На нашем сайте мы уже рассказывали, как можно собрать сварочный аппарат своими руками из подручных материалов. Сегодня мы расскажем, как сделать сварочный аппарат из компьютерного БП (блок питания). В статье приведены все необходимые схемы.
Зачем собирать самодельный аппарат?
Многие умельцы могут задаться вопросом: «А стоит ли вообще собирать аппарат своими руками из блока питания компьютера, если в магазине можно без проблем купить дешевый инвертор ценой в 50 долларов и не мучиться?». Справедливо. Но не все так очевидно, как кажется на первый взгляд.
Покупной инверторный сварочный агрегат ценой в 50$ — это то еще приключение. Эти аппараты не подходят даже для нерегулярного применения, что уж говорить о постоянной сварке. Скажем, на протяжении всего дачного сезона (а это период с апреля по ноябрь!). Как решить эту проблему? Купить аппарат хотя бы за 100 долларов. Но в таком случае об экономии и речь не идет. Для многих соотечественников 100$ — это половина зарплаты, если не больше.
Именно в подобной ситуации стоит задуматься о сборке самодельного аппарата. Его себестоимость существенно ниже, чем у заводских аппаратов. При этом вы сами выбираете, из чего он будет собран и какими функциями будет обладать. Нет смысла переплачивать за форсаж дуги или горячий старт, если они вам не нужны.
Второй фактор, на который нужно обратить особое внимание — это качество компонентов, из которых собран инвертор. Заводской бюджетный аппарат обычно собирают из не самых качественных запчастей, которые к тому же могут стоит недешево при сервисном ремонте. У самодельного инвертора нет этих проблем. Вы сами выбираете, из чего собирать аппарат и на чем можно сэкономить, а на чем не стоит.
Также учтите, что не всем сварщика в принципе нравятся современные сварочные аппараты. Они кажутся им слишком сложными и «навороченными». Им не нужны дополнительные функции и переплата за бренд. Они хотят получить просто функциональное устройство для дома. В таком случае целесообразнее сделать инвертор самому. Он будет именно таким, как вам нужно. Ничего лишнего. По такой системе можно собрать как простой и дешевый инвертор, так и аппарат покруче заводского.
Может все же купить аппарат в магазине?
Конечно, существует целый ряд причин, почему не стоит собирать сварочный инвертор своими руками из подручных средств. Нужно не просто выделить свободное время и иметь терпение. Важно обладать знаниями в области электротехники, разбираться в схемах и понимать принцип действия электроприборов. Но мы считаем, что даже если у вас нет необходимых знаний, их всегда можно приобрести. Достаточно потратить неделю-другую на изучение специальной литературы. К тому же, сейчас в интернете полно обучающих видеороликов, где все наглядно и просто.
Самодельный инвертор из БП
Технические характеристики
Аппарат, который вы можете собрать по данной в статье инструкции, относится к разряду резонансных. Максимальный сварочный ток – 120 Ампер, минимальный – 5 Ампер. Напряжение – 90В. При сварке электродами диаметром 2 мм аппарат работает без необходимости в перерыве, а при работе со стержнями 3 мм требуются 2 минуты отдыха при 10-ти минутном сварочном цикле. Но учтите, что эти цифры могут меняться в зависимости от температуры и влажности окружающей среды.
Вес аппарата не превышает 2 килограмм, так что вы сможете без трудностей переносить его. Предусмотрена плавная регулировка силы тока и падающая характеристика. Состоит из 4 плат (основная, плата конденсаторов, плата питания и блок управления). По нашему опыту может сказать, что этот аппарат отлично подходит для несложных дачных и гаражных работ.
Схема самодельного инвертора
Необходимые детали
Для начала немного теории. Сразу скажем, что делать сварочный аппарат из компьютерного блока питания – это не лучшая идея. Инвертор и БП – это два кардинально отличающихся между собой устройства. БП, конечно, можно перестроить под работу в качестве инвертора, но это очень непросто и готовый аппарат не будет отличаться большой работоспособностью.
Поэтому мы рекомендуем использовать только сам корпус от блока питания. Некоторые детали можно отыскать на радиорынке, а остальное взять из старого ПК.
Перейдем к самим деталям. Нам нужен силовой трансформатор, который можно собрать из трех сердечников типа Е42. Рекомендуем установить их вертикально. Сердечники Е42 можно достать из старого монитора.
Также нам необходим дроссель. Его можно собрать из двух кернов, которые так же можно найти в старом компьютерном мониторе. Остальные сердечники ферритовые, типа 2000 НМ. Силовые транзисторы и диоды можно взять из того же монитора. Возможно, в процессе вам придется докупить пару транзисторов, но стоят они очень недорого. Также купите два электролита и диодный мост.
Дополнительно вам понадобится трансформатор питания управления, шим-контроллер типа SG3524 и реле от ненужного источника бесперебойного питания, который есть в каждом компьютере.
Особенности сборки
На выходные провода необходимо продеть ферритовые трубочки, чтобы сгладить форму синусоидального выпрямленного напряжения. Такие трубочки можно найти в кассовом аппарате бренда Самсунг. Там они применяются в качестве фильтров. В данном случае волны без проблем сглаживаются, если индуктивность не превышает 5 mkH.
Силовая часть такого инвертора редко перегружается, а длина дуги не превышает 4 мм благодаря низкому напряжению холостого хода (без вольтдобавки). На обмотку можно пустить вольтдобавку, чтобы дуга поджигалась без проблем и горела устойчиво.
Трансформаторы тока необходимо включать только во вторичную обмотку, поскольку в первичке ток максимальный и протекает он лишь в момент резонанса. включены во вторичке так как в первичной обмотке максимальный ток.
Дополнительно на полевом транзисторе типа IRF510 можно сделать палный пуск аппарата и предусмотреть функцию антизалипания. Вход микросхемы «Shutdown» необходимо разорвать с помощью транзистора (при коротком замыкании), термодатчика или тумблера включения.
Принцип работы и детальная настройка этого самодельного инвертора очень подробно рассказываются в книге «Инвертор – это просто», которую несложно найти в интернете. Ознакомьтесь с ней самостоятельно.
Вместо заключения
Теперь вы знаете, что самодельный сварочный инвертор из компьютерного блока питания своими руками – это не самая хорошая идея. Мы рекомендуем использовать только корпус от блока питания, а остальные запчасти взять от деталей монитора или от другого инвертора. Блок питания и инвертор – это два кардинально разных устройства. И при большом желании вы, конечно, можете сделать инвертор именно из БП, но в этом нет особого смысла. Т.к., его работоспособность будет под большим вопросом.
В этой статье мы рассказали, как можно своими руками сделать полноценный сварочный инвертор, который выдаст до 120 Ампер сварочного тока и справится даже с электродами диаметром 3 мм. Такой аппарат будет в разы дешевле и надежнее заводского инвертора со схожими техническими характеристиками. Мы считаем, что это отличный вариант для дачи или гаража. За инструкцию благодарим Валерия А. Желаем удачи в работе!
Источник
Блок питания для сварочного инвертора своими руками
Сварочный инвертор был разработан на популярном форуме человеком под ником тимвал, ветка до сих пор очень активна. Именно эта схема популярна по причине простоты. Мой вариант сварочного инвертора рассчитан на ток всего в 100 ампер, это мало, но для моих задач больше не нужно.
Схема представляет из себя однотактный прямоходовый инвертор всего на одном IGBT транзисторе IRG4PC50KD.
Инвертор состоит из нескольких частей:
- Входной выпрямитель с накопительными конденсаторами и системой плавного пуска;
- Системы управления с драйвером на основе комплементарной пары составных транзисторов средней мощности;
- Силовая часть состоящая из IGBT транзистора и трансформатора;
- Выходная часть, состоящая из дросселя с выпрямителем.
Сетевое напряжение выпрямляется входным диодным мостом KBPC3510
и сглаживается ёмкими электролитами.
Важно заметить, что питание в начальный момент времени поступает не напрямую, а через балластный резистор R12, это нужно для плавной зарядки конденсаторов, иначе бросок тока может вывести из строя входной диодный мост и выбить автоматы.
Одновременно питание от конденсаторов через другой балластный резистор R11 поступает на линию питания микросхемы ШИМ.
Сердцем схемы является ШИМ контроллер UC3844,
который работает на частоте около 30кГц, сигнал с микросхемы сначала поступает на драйвер, выполненный на транзисторах VT2 и VT3, а затем на силовой транзистор VT4.
Напряжение на конденсаторах растет, растет и питание микросхемы и как только оно дойдет до порогового значения, для UC3844 оно составляет около 16 вольт, микросхема начнет вырабатывать управляющие импульсы, что приведет к запуску всего инвертора.
Во вторичных обмотках трансформатора появиться напряжение, это приведет к тому, что сработает силовое реле К1 и своими контактами замкнёт балластный резистор R12, и сетевое напряжение будет поступать напрямую на схему. Планый запуск длиться всего пару секунд. После плавного запуска инвертор будет работать в штатном режиме. Выходное напряжение инвертора около 60 вольт, этого достаточно для нормального розжига дуги.
Если во время сварки вращать регулятор ограничения тока (резистор R3), моментально сработает система обратной связи (цепь, состоящая из токового трансформатора ТТ, диодов VD2-VD4, резисторов R5 и R7, конденсатора С4) .
Токовый трансформатор намотан на тороидальном ферритовом сердечнике небольших размеров, он имеет две обмотки, первичная — всего один виток и вторичная.
Силовой трансформатор выполнен на сердечнке EPCOS E55/28/25 феррит №87.
Сердечник был без каркаса, поэтому его пришлось сделать самому из мтеклотекстолита.
Трансформатор имеет 4 обмотки:
- сетевая;
- вторичная силовая;
- фиксирующая;
- обмотка самозапитки для системы управления.
В моём варианте обмотка самозапитки не используется, взамен применен небольшой импульсный источник питания на 24 вольта с током 1-1,5 Ампера.
Начала всех обмоток на схеме указаны точками, я советую промаркировать начало намотки, например одевая на обмотку красную термоусадку, чтобы потом не гадать где начала, а где концы намоток.
В самом начале мотается сетевая обмотка, но не полностью, а по частям. В моем случае для намотки этой обмотки был использован провод диаметром 1,20мм 25 витков. Провод нужно уложить равномерно, виток к витку.
Затем обмотка изолируется, но перед этим заливается эпоксидной смолой. Смола будет заполнять все пустоты. Т.к. из-за сильных магнитных полей в трансформаторе будут образоваться вибрации и изоляция провода со временем может пострадать, а со смолой обмотка будет полностью неподвижной.
Ставим изоляцию каптоновым термостойким скотчем и мотаем остальную часть первичной обмотки. Количество витков, провод и направление намотки тоже самое.
Опять все заливаем смолой, а поверх ставим изоляцию. Позже, уже на плате концы этих обмоток соединяются параллельно.
После мотаем фиксирующую обмотку, диаметр провода 0,5мм. Количество витков 25-26, то есть тоже самое, что и в случае первичной обмотки. Эта обмотка намотана так, чтобы провод попадал между витками первичной обмотки. Фиксирующая обмотка равномерно растянута по всему каркасу. Аналогичным образом поступаем и с этой обмоткой, смола, изоляция. К стати ранее я ставил изоляцию в 2-3 слоя, а после намотки фиксирующей обмотки изоляция нужна более серьезная, слоя 4-5.
Ну и наконец силовая обмотка, самая трудоемкая. Ее можно намотать медной шиной либо что еще лучше — лентой. Наиболее эффективно работает литцендрат — провод, который состоит из большого количества параллельных тонких изолированных друг от друга проводов, такая намотка делается для минимизации влияния скин эффекта. Но при частотах в 30кГц, этот эффект не столь ощутимый, поэтому при большом желании можно взять пару тройку медных проводов большого диаметра, но такой провод очень трудно уложить, поэтому мой выбор остановился на литцендрате.
Обмотка состоит из 100 параллельных жил провода 0,5мм. Скручиваем все это дело дрелью и покрываем дополнительной изоляцией, опят же каптоновый скотч.
Количество витков всего 9, по расчетам этого хватит для того, чтобы напряжение холостого хода инвертора было в районе 60 вольт. После намотки её так же следует залить смолой.
Схема однотактная и между половинками сердечника нужен немагнитный зазор. В моем случае для получения необходимого зазора под всеми кернами были установлены прокладки, обычный чек от банкомата.
Далее трансформатор собирается, половинки сердечника надежно стягиваются, можно даже приклеить.
Трансформатор тока. Ферритовое колечко,проницаемость может быть от 1500 до 3000. Размеры моего кольца R18х8х6. Важно, чтобы оно было ферритовым, схожие кольца можно найти в некоторых импульсных блоках питания, они стоят по входу в качестве дросселя и на них как правило две обмотки. Желто-белые, зелено-синие кольца не подойдут, материал там иной.
Сначала сердечник изолируют, в моем случае каптноновым скотчем, затем мотают вторичную обмотку. Провод в лаковой изоляции, диаметр может быть от 0,25 до 0,5мм. Количество витков в моем случае 76.
Далее обмотку нужно изолировать, можно просто залить эпоксидной смолой. Первичная обмотка — один виток из двух параллельных жил провода 1,20мм идущий к силовому трансформатору.
Выходной выпрямитель классический для этой топологии. Два диода прямой и замыкающий, притом замыкающий нужен более мощный, но можно не заморачиватся и сразу воткнуть два диода типа 150EBU04 на 150 ампер с обратным напряжением 400 вольт. Диоды из этой линейки как правило применяют именно в сварочных инверторах. Диоды обязательно нужны ультра быстрые. Можно применить диодные сборки STTH20003.
В каждом корпусе два независимых друг от друга ультра быстрых диода, каждый на 100 Ампер с обратным напряжением 300 вольт. Они даже лучше, чем 150EBU04 т.к. площадь подложки у них гораздо больше и толще. Соединени е винтовое, что очень удобно.
Дроссель. Тут все не так одноз начно и по факту дроссель довольно критичен Чем больше его индуктивность, тем хорошо будет зажигаться дуга даже при малых токах. По схеме дроссель на 40мкГн, его хватит, но уверенный розжиг дуги я получил при токах от 30 ампер и в принципе этого хватит.
Честно сказать для дросселя пробовал разные материалы — алсифер, неизвестные кольца которые по всей видимости применяются в качестве фильтра в частотных преобразователях и наконец сердечник набранный из трансформаторных пластин.
Наилучшим решением является применение сердечников из порошкового железа, они специально созданы для работы в качестве дросселя, но кольцо нужно приличных размеров, и их найти не так уж и просто и стоят они приличных денег. В итоге по совету коллеги Тимура, который ранее собирал данный сварочник, мой выбор остановился на пакете из железных трансформаторных пластин.
Фишка в том, что сердечник фактически невозможно загнать в насыщение, то есть можно увеличить индуктивность и получить уверенный розжиг дуги при сварочных токах хоть 5 ампер, я понимаю, что на таких токах никто не варит, но все же.
Пакет собирал из того что было, в итоге сердечник получился с размерами 86х30х17мм. Пластины обмотал каптоноым скотчем, затем бумажный и намотал обмотку. Обмотка к сожалению алюминиевая, да медь лучше, но алюминиевый был в наличии. Обмотка намотана в три ряда, каждый ряд по 10-12 витков. После намотки каждого ряда обмотку покрывал лаком в несколько слоев и ставил изоляцию из ткани. Итоговая индуктивность дросселя около 80мкГн. Недостаток такого дросселя — большие размеры и вес, но в моем случае все получилось достаточно компактно, и даже умудрился зафиксировать его на плате. Выводы дросселя были обжаты медными луженными клеммами, ключевое слово луженными иначе такое соединение долго не проработает, будет перегреваться и окисляться.
Входная часть. Диодный мост взят готовый, сборка KBPC3510, мост на 35 ампер, обратное напряжение 1000 вольт, устанавливается на радиатор.
Силовое реле в схеме плавного пуска с катушкой 24 вольта, рассчитан на ток в 15-30 реальных ампер, если сварочник планируете на токи более 120 ампер, то реле желательно использовать именно 30-и амперное.
Входные электролитические конденсаторы на 450 вольт, в моем случае 2штуки по 470мкФ, желательно установить три, хуже не будет. Подбирайте конденсаторы от хорошего производителя с минимально возможным внутренним сопротивлением.
Ограничительный резистор по входу желательно взять на 10 ватт, сопротивление от 10 до 30 Ом.
Диоды VD7, VD8 и VD9 в схеме преобразователя нужны ультра быстрые, именно на тот ток и напряжение, которые по схеме.
Сборку конденсаторов я заменил одним, емкостью 0,33мкФ, конденсатор специального назначения созданный для работы в импульсных схемах, такие применяют в индукционных нагревателях. Обычные пленочные конденсаторы ставить сюда крайне не желательно.
Микросхема ШИМ у меня установлена на панельку для беспаячного монтажа, после полной наладки микросхему обязательно нужно запаять на плату.
Силовые дорожки на плате просто залудить и усилить припоем не достаточно, нужно их армировать медным проводом.
НАЛАДКА
Обязательно разряжайте входные конденсаторы перед началом наладочных работ!
Подаем сначала напряжение 24 вольт для управления, сетевое питания в тот момент отключено. Проверяем сигнал на затворе IGBT транзистора, к стати во время наладки можно использовать полевые транзисторы, я к примеру ставил IRF840, он слабый, но наладить схему можно. Транзистор обязательно должен быть установлен на радиаторе.
Проверяем наличие управляющих импульсов на затворе полевого ключа относительно массы питания, импульсы должны быть примерно с заполнением 45-47%, частототой около 30кГц, если они есть, то все нормально идем далее.
Первый запуск схемы делаем через страховочную лампу накаливания на 100 ватт. Схему управления желательно питать от отдельного внешнего источника питания на 24 вольта, отлично подходит лабораторный блок питания, притом родную систему питания можно исключить, повторюсь это только во время наладочных работ.
Нагрузочный резистор в схеме обратной связи по току заменяем на 10-и омный 1-2 ватт, это нужно, чтобы была возможность наладить схему при малых выходных токах.
Подключаем силу, то есть втыкаем вилку в розетку, лампа на момент вспыхнет, т.к. конденсаторы в начальный момент заряжаются достаточно большим током. Проверяем напряжение на выходе инвертора, оно должно быть около 60 вольт, напомню, что это напряжение холостого хода без выходной нагрузки. Регулятор тока ставим в минимальное положение.
Нагружаем инвертор, например нихромовой спиралью или лампочкой, нагрузку сначала даем небольшую, затем постепенно увеличиваем до тех пор, пока не сработает ограничение тока, то есть длительность управляющих импульсов резко не уменьшиться. Притом схема должна реагировать на вращение переменного резистора, длительность импульсов должна плавно меняться в зависимости от положения ползунка переменного резистора. Если этого не происходит, меняем местами концы вторичной обмотки трансформатора тока. Далее меняем страховочную лампу на более мощную (около 300 ватт).
Можно воткнуть более мощный полевой транзистор либо IGBT, но помните, что у нас по прежнему схема не до конца налажена. Сопротивление нагрузочного резистора можно уменьшить раза в два и повторяем то же самое, только на более больших токах. Можно попробовать инвертор на короткое замыкание при малых значениях тока, на этом этапе мы уже понимаем, что собрали сварку и можно разжечь небольшую дугу.
Если регулировка тока происходит в штатном режиме, то все сделано правильно. Помним о том, что инвертор без охлаждения и долго не балуемся.
Сейчас нам нужно привести инвертор в нормальное состояние. Только на этом этапе, после полной наладки схемы устанавливаем силовой IGBT транзистор. Радиаторы охлаждения целесообразно взять от процессоров ПК, они довольно добротные. Выходной выпрямитель у меня без изолирующей прокладки, термопаста имеется. А вот радиатор с силовым транзистором и одним из быстродействующих диодов, находятся на втором радиаторе и они обязательно должны быть изолированы теплопроводящей изоляционной прокладкой.
Силовой трансформатор, дроссель и радиаторы нужно надежно зафиксировать. Трансформатор и дроссель достаточно затянуть пластиковыми хомутами, можно дополнительно приклеить их к плате.
Радиаторы же желательно прикрутить к плате и обеспечить изоляцию друг от друга, чтобы они ни в коем случае не соприкасались во время вибраций или падений.
Очень важным моментом является охлаждение, не экономьте на вентиляторах, ставьте мощные высокооборотистые большого диаметра.
Правильно собранная схема во время работы не должна издавать свистов и шумов, если есть подобного рода проблемы, скорее всего проблема в трансформаторе, неправильный зазор, неверное количество витков или неправильная фазировка.
Проверим напряжение холостого хода, видим,что оно около 60 вольт, притом если нагрузка отсутствует вращая регулятор выходное напряжение не меняется. Ток потребления системы управления на холостом ходу от источника 24 вольта всего 80мА, с учетом тока потребления катушки реле.
Нагружаем инвертор для проверки системы ограничения тока. Нагрузкой служит мощный реостат, сопротивление выставлено меньше пол ома. Ток должен регулироваться достаточно плавно. Выставляем минимальный ток и попробуем зажечь дугу. Берём двух миллиметровый электрод и попробуем поварить на токах около 50-70 Ампер.
Видео по сборке и наладке сварочного инвертора:
Источник