Блок питания для тестера своими руками

Блок питания для тестера своими руками

Питание для тестера 9В

Пт, 21.11.2014, 17:24 | Сообщение # 1
LINROUT

Что разумнее для питания тестера? 6F22 батарейка, аккумулятор? Никель-кадмиевые, литиевые? Пользование тестером 2-3 часа в день, или даже меньше. Напрягает, что в описании к тестеру указано напряжение питания в 7.5в, как граничное. Далее замена.
———————————————
И может ли быть такое, что при наличие определённого контроллера в аккуме его полноценная зарядка в обычном заряднике для никель-кадмиевых на 9в? Здесь написано, что да!?

СССР
Какая ёмкость у тебя батарейки, тип (литий — никель), насколько хватает, что делаешь при понижении, когда тестер ругается? Подробнее, насколько возможно. Спасибки.

Egor
То есть ты советуешь литиевый аккум? Уточни, плиз.:)

Что значит от обычного БП? Блока питания? До какого напряжения тестер не ругается? У меня UT61E. Он при 7.5в материться. А что он при этом делает с точностью не знаю.

Источник

Питание мультиметра от батарейки 1,5 вольта

Среди радиолюбителей и профессионалов цифровые мультиметры имеют большую популярность благодаря их многофункциональности. Для их питания применена, как правило, девяти вольтова батарея «Крона», имеющая заметную саморазрядку, небольшую емкость и более высокую цену в сравнении с другими элементами.
Предлагаемое устройство питания цифрового мультиметра от одного элемента АА напряжением 1,5 вольта, позволит избежать указанных недостатков в работе и упростить эксплуатацию прибора.

В интернете предлагается много различных схем для преобразования напряжения 1,5 в 9 вольт. Каждая имеет свои плюсы и минусы. Данное устройство изготовлено на базе схемы А. Чаплыгина, опубликованной в журнале «Радио» (11.2001г., стр.42).
Отличием данного варианта исполнения преобразователя, является расположение элемента питания и преобразователя напряжения, в крышке футляра мультиметра, вместо создания компактного блока питания устанавливаемого вместо батареи «Крона». Это позволяет в любой момент, без разборки прибора, заменить элемент АА, а при необходимости отключить преобразователь (разъем Джек 3,5) с автоматическим включением резервной батареи «Крона» расположенной в своем отсеке. Кроме того, при изготовлении преобразователя напряжения, нет необходимости в миниатюризации изделия. Быстрее и проще намотать трансформатор на кольце большего диаметра, лучше теплоотвод, свободнее монтажная плата. Такое расположение узлов в крышке футляра не мешает работе с мультиметром.
Данный преобразователь может быть выполнен в любом подходящем корпусе и использоваться в самых разнообразных устройствах, где требуется питание от девятивольтовой батареи «Крона». Это мультиметры, часы, электронные весы и игрушки, медицинские приборы.

Схема генератора преобразователя напряжения

На транзисторах VT1 и VT2 собран двухтактный генератор импульсов. Ток положительной обратной связи протекает через вторичные обмотки трансформатора Т1 и нагрузку, подключенную между цепью + 9 В и общим проводом. За счет пропорционального токового управления транзисторами существенно уменьшены потери на их переключение и повышен КПД преобразователя до 80. 85 % .
Вместо выпрямителя высокочастотного напряжения используются база-эмиттерные переходы транзисторов самого генератора. При этом величина тока базы становится пропорциональной величине тока в нагрузке, что делает преобразователь весьма экономичным.
Другой особенностью схемы является срыв колебаний в отсутствие нагрузки, что автоматически может решить проблему управления питанием. Ток от батареи, при отсутствии нагрузки, практически не потребляется. Преобразователь, будет сам включаться тогда, когда от него потребуется что-нибудь запитать и выключаться, когда нагрузка будет отключена.
Но так как в большинстве современных мультиметров введена функция автоматического отключения питания, для исключения доработки схемы мультиметра, проще установить выключатель питания преобразователя.

Изготовление трансформатора преобразователя напряжения

Основой генератора импульсов является трансформатор Т1.
Магнитопроводом трансформатора Т1 служит кольцо К20х6х4 или К10х6х4,5 из феррита 2000НМ. Можно взять кольцо из старой материнской платы.

Порядок намотки трансформатора.
1. Вначале нужно подготовить ферритовое кольцо.
• Для того чтобы провод не прорезал изоляционную прокладку и не повредил свою изоляцию, желательно притупить острые кромки ферритового кольца мелкозернистой шкуркой или надфилем.
• Намотать изоляционную прокладку на кольцевой сердечник для исключения повреждения изоляции провода. Для изоляции кольца можно использовать лакоткань, изоленту, трансформаторную бумагу, кальку, лавсановую или фторопластовую ленту.

2. Намотка обмоток трансформатора с коэффициентом трансформации 1/7: первичная обмотка – 2х4 витка, вторичная обмотка – 2х28 витков изолированного провода ПЭВ -0,25.
Каждую пару обмоток наматывают одновременно в два провода. Складываем пополам провод отмеренной длины и сложенным проводом начинаем плотно наматывать на кольцо нужное количество витков.

Для исключения повреждения изоляции провода при эксплуатации, по возможности, применить провод МГТФ или другой изолированный провод диаметром 0,2-0,35 мм. Это несколько увеличит габариты трансформатора, приведет к образованию второго слоя обмотки, но гарантирует бесперебойную работу преобразователя напряжения.
• Вначале мотаются вторичные обмотки lll и lV (2х28 витков) цепи баз транзисторов (см. схему преобразователя).
• Затем на свободном месте кольца, так же в два провода, мотаются первичные обмотки l и ll (2х4 витка) цепи коллекторов транзисторов.
• В итоге, после разрезки петли начала обмотки, у каждой из обмоток будет 4 провода — по два с каждой стороны обмотки. Берём провод конца одной половины обмотки(l) и провод начала второй половины обмотки (ll) и соединяем их вместе. Аналогично поступаем со второй обмоткой (lll и lV). Должно получиться примерно следующее: (красный вывод – середина нижней обмотки (+), черный вывод – середина верхней обмотки (общий провод)).

• При намотке обмоток, витки можно закрепить клеем «БФ», «88» или цветной изолентой обозначающей разным цветом начало и конец обмотки, что в дальнейшем поможет правильно собрать обмотки трансформатора.
• При намотке всех катушек нужно строго соблюдать одно направление обмотки, а также отмечать начало и конец обмоток. Начало каждой обмотки помечено на схеме точкой у вывода. При несоблюдении фазировки обмоток генератор не запустится, так как в этом случае нарушатся условия необходимые для генерации. Для этой же цели, как вариант, возможно использовать два разноцветных провода от сетевого кабеля.

Сборка преобразователя напряжения

Преобразователь собираем согласно схеме и паяем все входящие элементы на текстолитовой плате вырезанной из универсальной монтажной платы, продающейся в радиотоварах, методом навесного монтажа. Размеры платы выбираются в зависимости от размеров выбранных транзисторов, получившегося трансформатора и места установки преобразователя. Вход, выход и общая шина преобразователя выведены гибким многожильным проводом. Выходные провода, с напряжением +9в, заканчиваются разъемом Джек 3,5 для подключения к мультиметру. Входные провода подключены к кассете с установленной батареей 1,5 вольта.

Элемент питания АА (1,5в) установлен в двухместную кассету от переносного приемника.

Настройка преобразователя.
Проверяем правильность сборки преобразователя, подключаем батарею и проверяем прибором наличие и величину напряжения на выходе преобразователя (+9в).
Если генерация не возникает и напряжения на выходе отсутствует, проверьте правильность подключения всех катушек. Точками на схеме преобразователя отмечено начало каждой обмотки. Попробуйте поменять местами концы одной из обмоток (входной или выходной).
Преобразователь способен работать и при уменьшении входного напряжения до 0,8 – 1,0 вольта и получить напряжение 9 вольт от одного гальванического элемента напряжением 1, 5 В.

Доработка мультиметра

Для подключения преобразователя к мультиметру, необходимо найти внутри прибора свободное место и установить там гнездо для штекера Джек 3,5 или аналогичного имеющегося разъема. В моем мультиметре M890D свободное место нашлось в углу, слева от отсека для батареи «Крона».
В качестве футляра для мультиметра используется футляр от электробритвы.

Источник

Тестер блоков питания ATX с регулируемой нагрузкой

При ремонте или испытании компьютерных блоков питания ATX часто возникает необходимость оценить их нагрузочные характеристики, такие как допустимые отклонения выходных напряжений, уровень пульсаций и конечно же максимальную выходную мощность. Без специального оборудования, в виде эквивалента нагрузки, осциллографа и некоторых других устройств протестировать соответствие стандарту характеристик, указанных производителем на наклейке блока питания крайне сложно. Одни создают специальные стенды, другие пользуются набором автомобильных ламп, третьи используют мощные проволочные резисторы в качестве нагрузочного эквивалента. Его сопротивление у большинства тестеров неизменно и не подбирается специально для каждого испытуемого блока, поэтому функциональность таких приборов ограничена. Мне хотелось сделать простое, но универсальное устройство, позволяющее полуавтоматически устанавливать требуемую нагрузку на шины +5V, +12V, +3,3V, одновременно измеряя соответствующие выходные напряжения и контролируя допустимый уровень их отклонений.

Таким образом был разработан и изготовлен прибор, состоящий из ступенчатого блока нагрузок, модуля управления включением этих нагрузок и платы тестера напряжений компьютерных БП (POWER SUPPLY TESTER), с которой были выпаяны разъемы и нагрузочные резисторы.

Блок нагрузок для каждого канала выходных напряжений 3,3V, 5V и 12V состоит из семи 10-ти ваттных цементных резисторов одинакового сопротивления, один из которых включен постоянно, а остальные шесть подключаются через MOSFET-транзисторы, выступающие в роли электронных ключей. Их поочерёдным открытием и закрытием управляет микросхема LM3914, которая применяется в светодиодных индикаторах с линейной шкалой. Она включена в режиме «столбик». Регулируя переменный резистор, происходит ступенчатое изменение уровня на выходах микросхемы, а значит и поочерёдное открытие или закрытие MOSFETов, которое контролируется загоревшимися светодиодами. Схема включения LM3914 выполнена так, чтобы можно было осуществлять регулировку от минимума (при котором не горит ни один светодиод и все MOSFETы закрыты, но включен один постоянный резистор), до максимума (при котором загораются все шесть светодиодов, MOSFETы открыты и все семь нагрузочных резисторов становятся подсоединенными параллельно). Для отдельной регулировки по каждому каналу использовано три таких модуля на LM3914. Слаботочные линии -5V, -12V и дежурного +5V SB нагружены постоянными маломощными сопротивлениями.

После подключения блока питания ATX к разъемам прибора и включении в сеть, должен загореться фиолетовый светодиод контроля дежурного напряжения +5В_SB. Поскольку этим напряжением питаются и микросхемы LM3914, требуемую нагрузку для каждого канала можно установить как перед запуском БП, так и во время работы, ориентируясь по светодиодным индикаторам.

Запускается тестируемый блок питания кратковременным нажатием кнопки S1, пока в цепи не появится сигнал «Power Good» и не откроется транзистор VT1, который зашунтирует кнопку, о чем будет сигнализировать загорание зелёного светодиода “PG”. Время задержки появления сигнала “PG” будет отображено на дисплее индикатора выходных напряжений. После этого должен заработать кулер и засветиться все светодиоды наличия выходных напряжений. Выключение осуществляется нажатием кнопки SB2. Ее контакты зашунтируют эмиттерный переход транзистора VT1, и он закроется, разомкнув цепь включения блока.

Какой уровень индикаторов выставить для каждого канала определяется исходя из нижеприведённых расчетов. Зная общее сопротивление резисторов при параллельном включении к каждой шине, можно рассчитать какая сила тока будет протекать через нагрузку и какой будет выходная мощность по каждому каналу выходных напряжений 3,3V, 5V и 12V.

Таким образом можно проводить тестирование с различными вариантами нагрузок, причем желательно, чтобы их общая суммарная мощность не превышала 100 процентов максимальной выходной мощности БП. Выход за пределы, в лучшем случае, может привести к срабатыванию защиты от перегрузки по току, а в худшем – к выходу из строя проверяемого блока питания. Всегда нужно обращать внимание и на допустимую комбинацию нагрузок по каждой линии, чтобы не допустить перекос напряжений, возникающий из-за неравномерного их распределения по шинам.

Повышая ток нагрузки контролируется снижение значений выходных напряжений, максимально допустимые отклонения которых не должны превышать 5% от номинала.

Для подключения испытуемого блока питания к тестеру была сделана внешняя плата, на которую припаяны 24-х контактный разъем для питания материнской платы, 4-х контактный разъем питания процессора, 6-ти контактный – для дополнительного питания видеокарты, SATA и Molex – для подключения жестких дисков и оптических приводов.

Тестер выполнен в стандартном корпусе блока питания ATX. В нижней части корпуса на посадочные места устанавливается плата нагрузок с ключами. На нагрузочные резисторы через термопасту по всей площади устанавливается радиатор размерами 130х110х45, который крепится к плате и обдувается родным кулером. Плата с микросхемами управления и светодиодами индикации включения нагрузок и состояний всех линий (+5V_Standy (дежурное), PowerGood, +3.3V, +5V, +12V, -12V, -5V (для старых БП)), а также тактовыми кнопками включения и выключения расположена в верхней части корпуса, который специально для удобств выбран с уже имеющимися для них отверстиями. Понадобилось только выпилить место под экран тестера напряжений. Цвет индикаторных светодиодов, а также светодиодов наличия напряжения на линиях, подобран в соответствии со стандартными цветами проводов блока питания.

Печатные платы выполнены в программе Sprint-Layout 6.0.

В качестве ключей подойдут любые n-канальные MOSFET-транзисторы в корпусе TO252, взятые с материнских плат.

Также необходимо не забыть вывести провода для подключения платы индикации выходных напряжений к соответствующим выводам, откуда были выпаяны разъёмы.

Выдает ли свои чистые 500 Ватт качественный блок питания известного бренда с сертификацией «80 Plus» или недорогой бюджетный блок питания с небольшим весом? Этим прибором с успехом удаётся проверить.

Источник

Читайте также:  Идеи рисунков для открытки своими руками
Оцените статью