Блок питания с регулировкой напряжения и тока
Друзья, сегодня хочу рассказать вам о своей новой самоделке, это блок питания с регулировкой напряжения и тока о котором мечтают все без исключения начинающие и опытные радиолюбители. Устройство можно использовать, как в качестве лабораторного блока для питания различных самоделок, так и в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Блок питания имеет стабилизированный регулятор напряжения и систему ограничения силы тока, защиту от переполюсовки клейм аккумулятора со световой индикацией, а также автоматический регулятор скорости вентилятора, изменяющий обороты в зависимости от нагрева радиатора. На этом рисунке изображена схема блока питания с регулировкой напряжения и тока рассчитанная на ток до 10А. К этой схеме можно подключать любой трансформатор или импульсный источник питания от 12 до 30В. Для тех кто любит по мощнее, в этой статье вы также найдете схему рассчитанную на ток до 25А. Не буду торопить события. Внимательно читайте статью до конца.
Схема блока питания с регулировкой напряжения и тока 1.2…30В 10А
Регулируемый стабилизатор напряжения LM317 позволяет плавно регулировать напряжение в диапазоне от 1.2 до 30В. Регулировка напряжения выполняется переменным резистором Р1. Транзистор Т1 MJE13009 выполняет роль ключа пропускающего через себя большой ток.
Система ограничения силы тока выполнена на полевом транзисторе Т2 IRFP260, позволяет ограничивать ток от 0 до 10А, управление током осуществляется переменным резистором Р2, что позволяет использовать данный блок питания в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Мощный резистор R6 с сопротивлением 0.1 Ом 20 Вт выполняет роль шунта. Купить его не проблема в Китае на Али Экспресс. Если не хочется долго ждать можно соединить несколько резисторов параллельно тогда получится один мощный резистор. Обратите внимание на то, что при параллельном соединении резисторов применяется специальная формула.
Общее сопротивление резисторов делится на количество резисторов. Как определить общее сопротивление, одинаковых резисторов? Надо просто взять сопротивление одного резистора и разделить на количество резисторов. Например, у меня есть 4 резистора, сопротивление каждого резистора 1 Ом и рассеиваемая мощность 10 Вт, следовательно общее сопротивление всех резисторов 1 Ом, если их соединить параллельно, то получится общее сопротивление четырех резисторов 0.25 Ом 40 Вт. Мощность всех резисторов суммируется. Таким образом можно сделать резистор любой мощности. На фотографиях и в видеоролике в моем блоке питания вы увидите сборку из 4 резисторов по 1 Ом 10 Вт с общим сопротивлением 0.25 Ом и мощностью 40 Вт. Сделал я так потому, что в тот момент у меня не было под рукой, да и в магазине тоже мощного резистора на 0.1 Ом 20 Вт. Но вот чудо, оказалось, что регулировка тока в данной схеме отлично работает даже с сопротивлением в 0.25 Ом. Мне стало интересно и я решил провести серию экспериментов с резисторами пришедшими через пару недель из Китая, с сопротивлением в 0.1 Ом, 0.25 Ом, 0.5 Ом, и пришел к выводу, что с любым из этих сопротивлений регулировка тока работает отлично. То есть, в данную схему можно поставить резисторы с любым сопротивлением в диапазоне от 0.1 Ом до 0.5 Ом, что делает эту схему доступной для сборки начинающим радиолюбителям. Ведь не всегда можно найти в магазине резисторы с нужным сопротивлением и мощностью. Ещё я пробовал заменить резистор куском нихромовой спирали от электроплитки, все тоже самое на работу регулировки тока это никак не повлияло, единственный минус в том, что спираль сильно нагревалась и её пришлось залить в бетон.
В схеме имеется встроенная защита от переполюсовки. При правильном подключении блока питания к аккумулятору загорается зеленый светодиод Led1. В случае не правильного подключения загорается красный светодиод Led2, сигнализирующий о ошибке подключения. Система корректно работает только при выключенном питании блока питания. То есть сначала подключаем аккумулятор, когда загорится зеленый светодиод включаем блок питания в сеть.
Автоматический регулятор оборотов вентилятора предназначен для уменьшения уровня шума возникающего в процессе работы блока питания. Стабилизатор напряжения L7812CV поддерживает постоянное напряжение 12В поступающее на делитель состоящий из терморезистора R8 установленного на радиаторе и подстроечного резистора Р3. Напряжение с делителя поступает на базу транзистора Т3. В процессе работы блока питания от большой нагрузки радиатор нагревается, сопротивление терморезистора R8 установленного в радиаторе становится меньше сопротивления подстроечного резистора Р3, напряжение на базе транзистора увеличивается и транзистор приоткрывается, тем самым увеличивая скорость вращения вентилятора. Настройка чувствительности регулятора осуществляется подстроечным резистором Р3.
В данной схеме регулируемого блока питания имеется возможность подключения разных моделей вольтметров и амперметров, стрелочных и электронных. С аналоговой классикой обозначенной на схеме буквами V вольтметр и A амперметр все понятно подключаем согласно схеме. Амперметр лучше покупать со встроенным шунтом, так гораздо компактней и дешевле. Класс точности вольтметра и амперметра с Али Экспресс должен быть 2.5 эти приборы работают нормально. А вот с китайскими электронными придется повозиться. На данный момент существует две модели китайских универсальных измерительных приборов (КУИП). Первая модель с синим проводом со встроенным шунтом более точная менее глючная, в последнее время её трудно найти на Али Экспресс. Вторая модель с желтым проводом и встроенным шунтом не точная и очень глючная с прыгающими показаниями амперметра от 0 до 0.25А на холостом ходу без нагрузки. Не понятно зачем её вообще продают? Если вы будете ставить электронный КУИП, тогда надо разорвать участок электрической цепи отмеченный на схеме красным крестиком. По другому в данной схеме электронный КУИП работать правильно не будет .
А эта схема для тех, кто любит мощные блоки питания. Как и обещал до 25А.
Схема блока питания с регулировкой напряжения и тока 1.2…30В 25А
В схему добавлен дополнительный мощный транзистор Т2 TIP35C способный выдерживать ток до 25А и резистор R3 200 Ом. Диодный мост заменен на более мощный. Транзистор IRFP250 выдерживает 30А, а транзистор IRFP260 49А.
На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 10А.
Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 10А
На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 25А.
Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 25А
Стабилизатор напряжения LM317, транзисторы TIP35C, IRFP250, 260 устанавливаем на радиатор через изолирующие термопрокладки и термошайбы. Транзистор MJE13009 устанавливаем на радиатор без изоляции, иначе от сильного нагрева и плохого отвода тепла через термопрокладку будет перегреваться и выходить из строя. Стабилизатор напряжения L7812CV и транзистор BD139 устанавливаем на разные радиаторы. Терморезистор вставляем в просверленное в радиаторе отверстие и закрепляем с помощью Поксипола или Эпоксидной смолы. В процессе установки терморезистора проверяйте мультиметром отсутствие электрического контакта, между терморезистором и радиатором. Переменные резисторы, а также светодиоды при необходимости можно соединить проводами и вынести за пределы платы.
Готовый блок питания начинает работать сразу после подачи питания на плату. Единственное что надо настроить, так это скорость вращения вентилятора. Для этого надо при холодном радиаторе с помощью подстроечного резистора Р3 выставить напряжение на вентиляторе примерно 1 вольт. Вентилятор начнет вращаться при температуре радиатора примерно 45 градусов, обороты будут подниматься прямо пропорционально температуре радиатора. При охлаждении радиатора обороты вентилятора будут снижаться. Так работает автоматический регулятор оборотов вентилятора.
Как же пользоваться блоком питания?
Очень просто. Включаем питание и выставляем регулируемым резистором Р1 нужное вам напряжение. Ручку регулируемого резистора Р2 ставим в крайнее правое положение соответствующее максимальной силе тока. Подключаем нагрузку к блоку питания, при необходимости добавляем напряжение. Если надо резистором Р2 можно ограничить ток.
Как заряжать аккумулятор?
Легко! При подключении аккумулятора блок питания должен быть выключен из сети. Ставим ручки резисторов Р1 и Р2 в крайнее левое положение, минимальное напряжение и минимальный ток. Подключаем аккумулятор к блоку питания. Должен загореться зеленый светодиод, это означает что аккумулятор подключен правильно. В случае ошибки подключения загорится красный светодиод. После того, как вы убедились в правильности подключения аккумулятора, включите блок питания в сеть. Переменным резистором Р1 установите напряжение 14.5В. Далее резистором Р2 установите силу тока равную 10% от емкости аккумулятора, то есть для 60А/ч батареи начальный ток должен быть не более 6А.
После установки силы тока произойдет падение напряжения примерно до 13В. По мере заряда аккумулятора напряжение будет постепенно подниматься до 14.5В, а сила тока будет снижаться до 0.1А это будет означать, что батарея полностью заряжена.
Что будет с блоком питания в случае короткого замыкания?
Ничего страшного не произойдет. В случае короткого замыкания сработает защита ограничения тока. Согласно закону Ома: чем больше сопротивление цепи, тем меньше сила тока будет в нем. Следовательно при коротком замыкании будет максимально возможный ток. Напряжение упадет, а сила тока будет той, которую вы ограничили резистором Р2.
Радиодетали для сборки блока питания с регулировкой напряжения и тока на 10А
- Диодный мост KBPC2510, KBPC3510, KBPC5010
- Конденсатор С1 4700mf 50V
- Регулируемый стабилизатор напряжения LM317
- Транзисторы Т1 MJE13009, T2 IRFP250, IRFP260, T3 КТ815, BD139
- Переменные резисторы Р1 5К, Р2 1К, Р3 10К
- Стабилитрон 12V 5W 1N5349BRLG
- Резисторы R1, R2 200R 0.25W, R3 1K 5W, R4 100R 0.25W, R5 47R 0.25W, R6 0.1R 20W, R7 3K 0.25W
- Терморезистор R8 B57164-K 103-J сопротивление 10К
- Светодиоды 5мм красный и зеленый, напряжение питания 3В
- Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
- Вентилятор 70х70 мм
Радиодетали для сборки блока питания с регулировкой напряжения и тока на 25А
- Диодный мост KBPC2510, KBPC3510, KBPC5010
- Конденсатор С1 4700mf 50V
- Регулируемый стабилизатор напряжения LM317
- Транзисторы Т1 MJE13009, T2 TIP35C, T3 IRFP250, IRFP260, T4 КТ815, BD139
- Переменные резисторы Р1 5К, Р2 1К, Р3 10К
- Стабилитрон 12V 5W 1N5349BRLG
- Резисторы R1, R2, R3 200R 0.25W, R4 1K 5W, R5 100R 0.25W, R6 47R 0.25W, R7 0.1R 20W, R8 3K 0.25W
- Терморезистор R9 B57164-K 103-J сопротивление 10К
- Светодиоды 5мм красный и зеленый, напряжение питания 3В
- Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
- Вентилятор 70х70 мм
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой напряжения и тока
Источник
Блок питания 0…30В/5А с цифровой индикацией напряжения и тока
Описываемый блок питания предназначен для использования в радиолюбительской лаборатории. Несмотря на то, что в радиолюбительской литературе печаталось множество схем подобных устройств, данный блок питания не требователен к специализированным микросхемам и импортным элементам. В настоящее время вопрос приобретения микросхем по-прежнему актуален и в некоторых регионах, доставать их проблематично. Данный блок питания является модернизацией блока питания, описанным в ( II ). Блок питания собран только из доступных деталей.
Характеристики блока питания:
Выходное напряжение регулируется от 0 до 30 В.
Выходной ток 5 А.
Падение напряжения при токе от 1 А до 6 А ничтожно мало и на выходных показателях не отражается.
Схема блока питания показана на рис.1 ниже
Рис. 1
Данный блок питания содержит три основных узла: внутренний сетевой узел питания VD 1- VD 4, C 1- C 7, DA 1, DA 2, узел защиты от перегрузки и КЗ VS 1, R 1- R 4, VD 3 и основной узел – регулируемый стабилизатор напряжения VT 2- VT 7, VD 4- VD 5, R 4- R 14, C 8.
А так же к блоку питания добавляется цифровая панель, т.е. блок индикации, который показан на рис.5.
Внутренний сетевой узел питания построен по традиционной схеме с сетевым трансформатором Т1.
Узел защиты особенностей не имеет. Датчик тока рассчитывался на ток 3А, но можно его рассчитать и на 5А. Длительное время блок питания эксплуатировался с током 5А. Никаких сбоев в его работе не наблюдалось. Диод HL 1 индицирует перегрузку по току или КЗ в нагрузке.
Основной узел – регулируемый стабилизатор напряжения компенсационного типа. Он содержит входную дифференциальную ступень на транзисторах VT 5, VT 7, две ступени усиления на транзисторах VT 3 и VT 2, и регулирующий транзистор VT 1. Элементы VT 4, VT 6, VD 4, VD 5, R 5 — R 8, R 10 образуют стабилизаторы тока. Конденсатор С8 предотвращает самовозбуждение блока. Т.к. транзисторы VT 5 и VT 7 не подбирались одинаковыми, то имеется определенное «смещение нуля» этого каскада, которое и является минимальным напряжением блока питания. В небольших пределах оно регулируется с помощью подстроечного резистора R 7 и, в авторском варианте достигало на выходе блока питания приблизительно 47 m V . Выходное напряжение регулируется резистором R 13. Верхняя граница напряжения – подстроечным резистором R 14.
Рис. 2
Конструкция и детали. Мощность трансформатора Т1 должна быть не менее 100 – 160вт, ток обмотки II – не менее 4 – 6А. Ток обмотки III – не менее 1…2А. Диодную сборку RS 602 можно заменить на сборку RS 603 или диодами, рассчитанными на ток 10А. Диодный мост VD 2 можно заменить на любой из серии КЦ402 – КЦ405, которые приклеиваются со стороны печатных дорожек, зеркально конденсатору С1 и соединяются гибкими проводниками с контактными площадками VD 2 на плате. Транзистор VT 1 следует устанавливать на теплоотводе площадью не менее 1500см 2 . Площадь радиатора рассчитывается по формуле S = 10 I n ( U вх. – U вых. ), где S – площадь поверхности радиатора (см 2 ); I n – максимальный ток, потребляемый нагрузкой; U вх. – входное напряжение (В); U вых. – выходное напряжение (В).
Транзистор КТ825А – составной. Его можно заменить парой транзисторов, как показано на рисунке 2.
Данные транзисторы, соединенные по схеме Дарлингтона. Резистор R 4 подбирают экспериментально, по току срабатывания защиты. Резисторы R 7 и R 14 – многооборотные СП5-2. Резистор — R 13 любой переменный с линейной функциональной характеристикой (А). В авторском варианте применен переменный резистор ППБ-3А на 2,2К — 5% . Микросхемы DA 1 и DA 2 можно заменить аналогичными отечественными КР142ЕН5А и КР1162ЕН5А. Их мощность позволяет стабилизированное напряжение ± 5 В для питания внешних нагрузок с током потребления до 1А. Данной нагрузкой является цифровая панель, которая используется для цифровой индикации напряжения и тока в блоках питания. Если не использовать цифровую панель, то микросхемы DA 1 и DA 2 можно заменить микросхемами 78 L 05 и 79 L 05.
Печатная плата блока питания показана на рис.3 и рис.4.
Рис. 3
Рис. 4
Налаживание. Так как конструкция расположена на двух печатных платах, сначала настраивают блок питания, затем блок цифровой индикации.
Блок питания. При исправных деталях и отсутствие ошибок в монтаже устройство начинает работать сразу после включения. Его налаживание заключается в установлении необходимых пределов изменения выходного напряжения и тока срабатывания защиты. Движки резисторов R 7 и R 13 должны находиться в среднем положении. Резистором R 14 по вольтметру добиваются показания 15 вольт. Затем движок резистора R 13 переводят в минимальное положение и по вольтметру резистором R 7 устанавливают 0 вольт. Теперь движок резистора R 13 переводят в максимальное положение и резистором R 14 по вольтметру устанавливают напряжение 30 вольт. Резистор R 14 можно заменить постоянным, для этого в плате предусмотрено место – резистор R 15. В авторском варианте это резистор 360 Ом. Размер печатной платы блока питания 110 х 75 мм . Диоды VD 3 – VD 5 можно заменить на диоды КД522Б.
Цифровая панель состоит из входного делителя напряжения и тока, микросхемы КР572ПВ2А и индикации из четырех семисегментных светодиодных индикаторов, показанных на рис 5. Резистор R 4 цифровой панели состоит из двух отрезков константанового провода ? =1мм и длиной 50мм. Разница в номинале резистора должна превышать 15 — 20%. Резисторы R 2 и R 6 марки СП5-2 и СП5-16ВА. Переключатель режимов индикации напряжения и тока типа П2К. Микросхема КР572ПВ2А представляет собой преобразователь на 3,5 десятичных разрядов, работающий по принципу последовательного счета с двойным интегрированием, с автоматической коррекцией нуля и определением полярности входного сигнала.
Для индикации использовались импортные светодиодные семисегментные индикаторы KINGBRIGT DA 56 – 11 SRWA с общим анодом. Конденсаторы С2 – С4 желательно применять пленочные типа К73-17. Вместо импортных семисегментных светодиодов можно применить отечественные с общим анодом типа АЛС324Б.
Рис. 5
Цифровая панель индикации напряжения и тока. После включения питания и безошибочном монтаже, при исправных деталях должны засветиться сегменты индикации HG 1- HG 3. По вольтметру резистором R 2 на ножке 36 микросхемы КР572ПВ2 выставляется напряжение 1 вольт. К ножкам (а) и ( b ) подключают блок питания. На выходе блока питания устанавливают напряжение 5 … 15 вольт и подбирают резистор R 10 (грубо), заменив его, на время, переменным. С помощью резистора R8 устанавливают более точное показание напряжения. После чего, к выходу блока питания подсоединяют переменный резистор мощностью 10 … 30 ватт, по амперметру выставляют ток равным 1А и резистором R 6 выставляют значение на индикаторе. Показание должно быть 1,00. При токе 500 мА – 0,50, при токе 50мА – 0,05. Таким образом, индикатор может индицировать ток от 10мА, т.е. 0,01. Максимальное значение индикации тока 9,99А.
Для большей разрядности индикации можно применить схему на КР572ПВ6. Размер печатной платы цифровой панели 80 х 50 мм ., рис.6 и рис.7. Контактные площадки U и I на печатной плате цифровой панели, с помощью гибких проводников подключаются к точкам соответствующих индикаторов HG 2 и HG 1. Микросхему КР572ПВ2А можно заменить на импортную микросхему ICL7107CPL.
Рис. 6
Рис. 7
Литература:
• Стабилизированный выпрямитель тока типа ТЭС 12 – 3 – НТ. г Горце Делчев. Болгария. 1984г.
• А.Патрин Лабораторный блок питания 0…30 В. РАДИО №10 2004г., стр.31.
• Импульсный блок питания на базе ПК. С.Митюрев. РАДИО №10 2004г. стр.33.
• Ануфриев А. Сетевой блок пита ния для домашней лаборатории. — Радио, 1992, N 5, С.39-40.
• Стабилизатор напряжения с двойной защитой Ю. КУРБАКОВ , РАДИО февраль 2004г. стр.39.
• Бирюков С. Портативный цифровой мультиметр. — В помощь радиолюбителю, вып. 100 — ДОСААФ, 1988. с. 71-90.
• Бирюков С. Цифровые устройства на МОП интегральных микросхемах. — М.: Радио и связь, 1990:1996 (второе издание).
• Радио N 8 1998г. с.61-65
• Digital Voltmeter
Источник