Как получить двадцать четыре вольта из компьютерного блока питания
Статья поясняет как переделать обычный компьютерный блок питания на напряжение 24 вольта.
В некоторых случаях возникает потребность в мощных источниках питания для различного оборудования, рассчитанного на напряжение 24 вольта.
В этой статье расскажу как можно переделать обычный компьютерный блок питания как АТХ так и АТ на напряжение 24 в. Так же из нескольких таких блоков можно компоновать любые напряжения для питания всевозможных устройств.
Например для питания местной АТС УАТСК 50/200М, рассчитанной на напряжение 60 в и мощность около 600 Ватт, автор статьи заменил обычные громадные трансформаторные блоки на три маленьких компьютерных блоков питания которые аккуратно умещались на стенке рядом с рубильником питания и почти не создавая при этом никакого шума.
Переделка заключается в добавлении двух силовых диодов, дросселя и конденсатора. Схема аналогичная шине питания +12в после импульсного трансформатора, только диоды и полярность конденсатора обращены наоборот, как показано на рисунке (фильтрующие конденсаторы не показаны).
Прелесть такой переделки заключается в том, что цепи защиты и стабилизации напряжения остаются не тронутыми и продолжают работать в прежнем режиме. Возможно получить напряжение отличное от 24 вольт (например 20 или 30), но для этого придётся изменить параметры делителя опорного напряжения управляющей микросхемы и изменить либо отключить схему защиты, что сделать уже более сложно.
Дополнительные диоды Д1 и Д2 крепятся через изоляцию на том же самом радиаторе, что и остальные, в любом удобном месте но с обеспечением полного пятна контакта с радиатором.
Дроссель Л1 крепиться в любом доступном на плате месте (можно приклеить), но следует отметить, что в различных моделях и марках блоков питания он будет греться по-разному, возможно даже больше чем уже стоящий по цепи + Л2 (зависит от качества блока питания). В таком случае нужно либо подбирать индуктивность (которая не должна быть меньше стандартной Л2) либо крепить его непосредственно на корпус (через изоляцию) для отвода тепла.
Проверять блок можно на полной нагрузке или на нагрузке, на которую он у вас будет работать. При этом корпус должен быть полностью закрыт (как положено). При проверке следует наблюдать не перегреваются ли радиаторы, на которых закреплены полупроводники и дополнительно установленный дроссель по цепи -12в. К примеру, блок питания рассчитанный на 300 ватт можно нагрузить током 10-13А при напряжении 24В. Не лишним будет проверить пульсации выходного напряжения осциллографом.
Так же очень важно отметить, что если у вас будут работать вместе два или более блоков соединённые последовательно, то корпус (массу) схемы нужно ОТКЛЮЧИТЬ от металлического корпуса блока питания (я это делал простым перерезанием дорожек в местах крепления платы к шасси). Иначе вы получите короткое замыкание или через провод заземления шнуров питания или через касание корпусов друг к другу. Для наглядности исправной работы блока можно вывести наружу лампочку или светодиод.
Отличие переделки стандартов АТ и АТХ заключается лишь в запуске блока. АТ начинает работать сразу после включения в сеть 220 в, а АТХ нужно либо запускать сигналом PS-ON, как это сделано на компьютере, либо заземлить провод этого сигнала (обычно он подходит к управляющей ножке микросхемы). При этом блок так же будет стартовать при включении в сеть.
Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!
Записывайтесь в онлайн-университет от GeekBrains:
Изучить C, механизмы отладки и программирования микроконтроллеров;
Получить опыт работы с реальными проектами, в команде и самостоятельно;
Получить удостоверение и сертификат, подтверждающие полученные знания.
Starter box для первых экспериментов в подарок!
После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.
Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.
Источник
Регулируемый блок питания 2,5-24в из БП компьютера
Как самому изготовить полноценный блок питания с диапазоном регулируемого напряжения 2,5-24 вольта, да очень просто, повторить может каждый не имея за плечами радиолюбительского опыта.
Делать будем из старого компьютерного блока питания, ТХ или АТХ без разницы, благо, за годы PC Эры у каждого дома уже накопилось достаточно количество старого компьютерного железа и БП наверняка тоже там есть, поэтому себестоимость самоделки будет незначительной, а для некоторых мастеров равно нулю рублей.
Мне достался для переделки вот какой АТ блок.
Чем мощнее будете использовать БП тем лучше результат, мой донор всего 250W с 10 амперами на шине +12v, а на деле при нагрузке всего 4 А он уже не справляется, происходит полная просадка выходного напряжения.
Смотрите что написано на корпусе.
Поэтому смотрите сами, какой ток вы планируете получать с вашего регулируемого БП, такой потенциал донора и закладывайте сразу.
Вариантов доработки стандартного компьютерного БП множество, но все они основаны на изменении в обвязке микросхемы IC — TL494CN (её аналоги DBL494, КА7500, IR3М02, А494, МВ3759, М1114ЕУ, МPC494C и т.д.).
Рис №0 Распиновка микросхемы TL494CN и аналогов.
Посмотрим несколько вариантов исполнения схем компьютерных БП, возможно одна из них окажется ваша и разбираться с обвязкой станет намного проще.
Приступим к работе.
Для начала необходимо разобрать корпус БП, выкручиваем четыре болта, снимаем крышку и смотрим внутрь.
Ищем на плате микросхему из списка выше, если таковой не окажется, тогда можно поискать вариант доработки в интернете под вашу IС.
В моем случае на плате была обнаружена микросхема KA7500, значит можно приступать к изучению обвязки и расположению ненужных нам деталей, которые необходимо удалить.
На фото разъём питания 220v.
Отсоединим питание и вентилятор, выпаиваем или выкусываем выходные провода, чтобы не мешали нам разбираться в схеме, оставим только необходимые, один желтый (+12v), черный (общий) и зеленый* (пуск ON) если есть такой.
На фото — черные конденсаторы как вариант замены для синего.
Делается это потому, что наш доработанный блок будет выдавать не +12 вольт, а до +24 вольт, и без замены конденсаторы просто взорвутся при первом испытании на 24v, через несколько минут работы. При подборе нового электролита емкость уменьшать не желательно, увеличивать всегда рекомендуется.
Самая ответственная часть работы.
Будем удалять все лишнее в обвязке IC494, и припаивать другие номиналы деталей, чтобы в результате получилась вот такая обвязка (Рис. №1).
Рис. №1 Изменение в обвязке микросхемы IC 494 (схема доработки).
Нам будут нужны только эти ножки микросхемы №1, 2, 3, 4, 15 и 16, на остальные внимание не обращать.
Рис. №2 Вариант доработки на примере схемы №1
На фото — приподнятием ножек ненужных деталей, разрываем цепи.
Некоторые резисторы, которые уже впаяны в схему обвязки могут подойти без их замены, например, нам необходимо поставить резистор на R=2.7k с подключением к «общему», но там уже стоит R=3k подключенный к «общему», это нас вполне устраивает и мы его оставляем там без изменений (пример на Рис. №2, зеленые резисторы не меняются).
На фото— перерезанные дорожки и добавленные новые перемычки, старые номиналы записываем маркером, может понадобится восстановить все обратно.
Таким образом просматриваем и переделываем все цепи на шести ножках микросхемы.
Это был самой сложный пункт в переделке.
Делаем регуляторы напряжения и тока.
Берем переменные резисторы на 22к (регулятор напряжения) и 330Ом (регулятор тока), припаиваем к ним по два 15см провода, другие концы впаиваем на плату согласно схеме (Рис. №1). Устанавливаем на лицевую панель.
Контроль напряжения и тока.
Для контроля нам понадобятся вольтметр (0-30v) и амперметр (0-6А).
Амперметр я использовал свой, из старых запасов СССР.
ВАЖНО — внутри прибора есть резистор Тока (датчик Тока), необходимый нам по схеме (Рис. №1), поэтому, если будете использовать амперметр, то резистор Тока ставить дополнительно не надо, без амперметра ставить надо. Обычно RТока делается самодельный, на 2-х ватное сопротивление МЛТ наматывается провод D=0,5-0,6 мм, виток к витку на всю длину, концы припаяем к выводам сопротивления, вот и все.
Корпус прибора каждый сделает под себя.
Можно оставить полностью металлический, прорезав отверстия под регуляторы и приборы контроля. Я использовал обрезки ламината, их легче сверлить и выпиливать.
Источник
Регулируемый блок питания своими руками
Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.
Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ
Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.
Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.
А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.
Схема регулируемого блока питания с защитой от КЗ на LM317
Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.
Печатная плата регулируемого блока питания на регуляторе напряжения LM317
Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.
Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.
А теперь самое интересное… Испытания блока питания на прочность.
Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.
Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.
Схема подключения вентилятора к блоку питания
Что будет с блоком питания при коротком замыкании?
При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.
Радиодетали для сборки регулируемого блока питания на LM317
- Стабилизатор напряжения LM317
- Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
- Конденсатор С1 4700mf 50V
- Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
- Переменный резистор Р1 5К
- Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками
Источник