- НЕОБЫЧНЫЙ ДЕТЕКТОР ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ
- Принципиальная электросхема
- Процесс сборки
- Дополнительные возможности
- Видео работы детектора ВЧ
- Делаем высокочувствительный детектор электромагнитного поля
- Загрузки
- Своими руками пассивный измеритель эми схема. Детектор электромагнитного излучения своими руками. Схемы самодельных устройств охраны и защиты информации
- Простой измеритель электромагнитного поля
НЕОБЫЧНЫЙ ДЕТЕКТОР ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ
Это интересное устройство позволяет услышать мир электромагнитного излучения, что нас окружает. Оно преобразует колебания высокой частоты излучения, генерируемого разнообразными электронными устройствами в слышимую форму. Можно использовать его возле компьютеров, планшетов, мобильных телефонов и т. д. Благодаря ему вам удастся услышать действительно уникальные звуки, создаваемые работающей электроникой.
Принципиальная электросхема
Схема предполагает реализацию данного эффекта с как можно наименьшим числом радиоэлементов. Дальнейшие улучшения и исправления лежат уже на вашем усмотрении. Некоторые значения деталей вы можете подобрать для своих потребностей, другие являются постоянными.
Процесс сборки
Сборка предполагает использование макетной платы размером не менее 15 x 24 отверстия, и особое внимание обращается на расположение элементов на ней. На фотографиях показано рекомендуемое расположение каждого из радиоэлементов и какие связи между ними выполнить. Перемычки на печатной плате можно выполнить из фрагментов кабеля или отрезанных ножек от других элементов (резисторы, конденсаторы), которые остались после их монтажа.
Сначала надо впаять катушки L1 и L2. Хорошо отодвинуть их друг от друга, что даст нам пространство и увеличит эффект стерео. Эти катушки являются ключевым элементом схемы — они ведут себя как антенны, которые собирают электромагнитное излучение из окружающей среды.
После впайки катушек можно установить конденсаторы C1 и C2. Их емкость составляет 2,2 мкФ и определяет нижнюю частоту среза звуков, которые будут услышаны в наушниках. Чем выше значение ёмкости, тем ниже звуки воспроизводящиеся в системе. Большая часть мощного электромагнитного шума лежит на частоте 50 Гц, так что есть смысл его отфильтровать.
Далее припаиваем резисторы по 1 кОм — R1 и R2. Резисторы эти, вместе с R3 и R4 (390 кОм) определяют усиление операционного усилителя в схеме. Инвертирование напряжения не имеет в нашей системе особого значения.
Виртуальная масса — резисторы R5 и R5 с сопротивлением 100 кОм. Они являются простым делителем напряжения, который в данном случае будет делить напряжение 9 V на половину, так что с точки зрения схемы питается м/с напряжением -4,5 V и +4,5 V по отношению к виртуальной массе.
Можно поставить в панельку операционный усилитель любой со стандартными выводами, например OPA2134, NE5532, TL072 и другие.
Подключаем аккумулятор и наушники — теперь мы можем использовать этот акустический монитор для прослушки электромагнитных полей. Батарею можно приклеить к плате скотчем.
Дополнительные возможности
Что можно добавить, чтобы увеличить функциональность? Регулятор громкости — два потенциометра между выходом из схемы и гнездом для наушников. Выключатель питания — сейчас схема включена все время, пока не отсоединится батарейка.
При испытаниях оказалось, что устройство очень чувствительно на источника поля. Вы можете услышать, например, как обновляется экран в мобильном телефоне, или как красиво поет кабель USB во время передачи данных. Приложенный к включенному громкоговорителю работает как обычный и вполне точный микрофон, который собирает эл-магнитное поле катушки работающего динамика.
Хорошо ищет кабеля в стене, на манер трассоискателя. Только надо поднять НЧ, увеличив все 4 ёмкости до 10 мкФ. Недостатком является довольно большой шум и ещё сигнал слишком слабый — нужен какой-то дополнительный усилитель мощности, например на PAM-8403.
Видео работы детектора ВЧ
Источник
Делаем высокочувствительный детектор электромагнитного поля
Простой в сборке, но высокочувствительный, детектор электромагнитного поля на Arduino
Это простое устройство способно обнаруживать даже очень слабые электромагнитные поля. Относительная напряженность поля отображается в графическом виде на ЖК-индикаторе, дополнительно прибор сигнализирует звуковым зуммером и светодиодом (Рисунок 1).
Рисунок 1. | Внешний вид детектора электромагнитного поля. |
Схема соединений компонентов прибора в среде Fritzing изображена на Рисунке 2. (Схема в более высоком разрешении доступна для скачивания в разделе загрузок). Как видно на рисунке, схема очень проста и состоит из платы Arduino Nano, двустрочного ЖК-индикатора, зуммера, светодиода, переключателя и батареи питания 9 В.
Рисунок 2. | Принципиальная схема высокочувствительного детектора электромагнитного поля. |
Основой прибора является плата Arduino Nano. В качестве датчика используется отрезок медного провода диаметром 1.5 мм, но вы можете использовать любой тип провода. Чувствительность прибора можно регулировать программно (в исходном коде), а также путем изменения номинала резистора, включенного между землей и аналоговым входом A0. Можно предусмотреть в конструкции несколько резисторов и подключать их в схему с помощью переключателя. В авторском варианте с помощью переключателя выбирается один из двух резисторов и, соответственно, степень чувствительности прибора. Таким образом, прибор можно откалибровать, сравнивая его показания с промышленным решением.
Светодиод подключен к выходу D10, звуковой зуммер к выходу D9. ЖК индикатор 16×2 подключается к плате Arduino по параллельному 4-битному интерфейсу. Для регулировки контрастности индикатора используется подстроечный резистор.
Программная часть прибора (скетч Arduino) представляет собой комбинацию двух Arduino-проектов: из проекта измерителя уровня громкости на Arduino KTAudio используется часть для работы с ЖК-индикатором, а из проекта детектора электромагнитного поля Aaron ALAI EMF Detector используется часть для работы с сенсором. Автор внес некоторые коррективы для повышения стабильности работы устройства. Скетч доступен для скачивания в разделе загрузок.
На видео ниже видно, что прибор может легко обнаруживать электромагнитные поля, создаваемые скрытыми силовыми кабелями электрической сети в доме, даже если они не подключены к потребителю. Электромагнитное поле от старого ЭЛТ-монитора может быть обнаружено на расстоянии 3 м и более.
Все компоненты прибора можно разместить в небольшом корпусе (Рисунок 3).
Рисунок 3. | Вариант расположения компонентов детектора электромагнитного поля в корпусе. |
Загрузки
Перевод: Vadim по заказу РадиоЛоцман
Источник
Своими руками пассивный измеритель эми схема. Детектор электромагнитного излучения своими руками. Схемы самодельных устройств охраны и защиты информации
Хочу представить схему устройства, которое имеет чувствительность к высокочастотному электромагнитному излучению. В частности, его можно применить для индикации входящих и исходящих вызовов мобильного телефона. Например, если телефон находится на беззвучном режиме, то это устройство позволит быстрее заметить входящий звонок или SMS.
Все это помещается на монтажную плату длиной 7 см.
Большую часть платы занимает схема индикации.
Также здесь присутствует антенна.
Антенной может служить отрезок любого провода длиной не менее 15 см. Я сделал ее в виде спирали, похожую на катушку. Ее свободный конец просто припаян к плате, чтобы он не болтался. Было испробовано много разных форм антенны, но я пришел к выводу, что важнее не форма, а её длина, с которой вы можете поэксперементировать.
Давайте рассмотрим схему.
Здесь собран усилитель на транзисторах.
В качестве транзистора VT1 использован КТ3102ЕМ. Решил выбрать именно его, потому что он имеет очень хорошую чувствительность.
Все остальные транзисторы (VT2-VT10) это 2N3904.
Рассмотрим схему индикации: транзисторы VT4-VT10 здесь являются ключевыми элементами, каждый из которых включает соответствующий светодиод при поступлении сигнала. В роли транзисторов этой шкалы могут быть использованы любые, можно даже КТ315, но при пайке удобнее использовать транзисторы в корпусе ТО-92 из-за удобного расположения выводов.
Здесь использованы пороговые диоды (VD3-VD8), и поэтому в каждый момент времени светится только один светодиод, показывая уровень сигнала. Правда этого не происходит по отношению к излучению мобильного телефона, так как сигнал постоянно пульсирует с большой частотой, вызывая свечение почти всех светодиодов.
Количество, «светодиодно-транзисторных» ячеек не следует делать больше восьми. Номиналы базовых резисторов здесь одинаковые и составляет 1 кОм. Номинал будет зависеть от коэффициента усиления транзисторов, при использовании КТ315 следует тоже использовать резисторы на 1 кОм.
В качестве диодов VD1, VD2 желательно использовать диоды Шоттки, так как они имеют меньшее падение напряжения, однако все работает даже при использовании распространенного 1N4001. Один из них (VD1 или VD2) можно исключить, если индикация будет слишком зашкаливать.
Все остальные диоды (VD3 — VD8) это те же самые 1N4001, но можно попробовать использовать любые имеющиеся под рукой.
Конденсатор С2 — электролитический, его оптимальная емкость от 10 до 22 мкФ, он на доли секунды задерживает погасание светодиодов.
Номинал резисторов R13 И R14 зависит от потребляемого светодиодами тока, и будет лежать в пределе от 300 до 680 Ом, но номинал резистора R13 может быть изменен в зависимости от питающего напряжения или при недостаточной яркости светодиодной шкалы. Вместо него можно припаять подстроечный резистор и добиться желаемой яркости.
На плате имеется переключатель, который включает некий «турбо режим» и пропускает ток в обход резистора R13, вследствие чего увеличивается яркость шкалы. Я его использую при питании от батарейки типа крона, когда она подсаживается и шкала светодиодов тускнеет. На схеме переключатель не указан, т.к. он не обязателен.
После подачи питания светодиод HL8 начинает гореть сразу и просто указывает на то, что устройство включено.
Питается схема напряжением от 5 до 9 Вольт.
Далее можно изготовить для него корпус, например из прозрачного пластика, а в качестве основания можно использовать фольгированный текстолит. Подключив антенну к металлизации платы, возможно удастся повысить чувствительность этого индикатора высокочастотных излучений.
Кстати, на излучение микроволновки он тоже реагирует.
Источник
Простой измеритель электромагнитного поля
Благодаря распространенности электроники и электричества в современном мире, электромагнитные поля всегда вокруг нас. Но из-за крайне ограниченного набора чувств, мы, люди, проводим большую часть времени совершенно не замечая их. Было бы здорово, сделать что-то, что не просто может их обнаружить, но и позволит нам взглянуть на их осциллограммы на экране осциллографа. Другими словами, приставка-пробник электромагнитного поля.
Стоит отметить, что это устройство не предназначено для любых серьезных и научных работ. Это просто забавная игрушка.
Некоторое время назад, гугля об обнаружении ЭДС и применении таких устройств, я наткнулся на статью «Contactless Sensing of Appliance State Transitions Through Variations in Electromagnetic Fields». Это была интересная статья, и в ней использовалась довольно простая схема на основе измерительного усилителя. Я решил попробовать сделать нечто подобное.
У меня уже были некоторые измерительные усилители производства Texas Instruments, INA122s. Я время от времени получаю их в качестве бесплатных образцов от TI. В качестве индуктора я использовал тот индуктор, который у меня был. Вероятно, его индуктивность находится в пределах 100мкГн -1мГн. Я сделал прототип устройства на макетной плате, чтобы настроить измерительный усилитель, но мне хотелось чего то более постоянного. В моем университете есть фрезерный станок для производства ПП и я могу его использовать, поэтому я разработал и сделал простую плату.
Схема очень простая. В ней есть источник питания и выключатель питания (он поставлен на GND для удобства трассировки). Напряжение подается на резистивный делитель, чтобы сделать виртуальную землю. Потом идет измерительный усилитель, который усиливает напряжение с катушки. Также там есть RC ФНЧ, но это наверно не имеет смысла. Я добавил его на плату только для того, чтобы у меня было место для фильтра низких или высоких частот, если он понадобится. На выходе установлен BNC разъем. Все, что вам нужно сделать, это прикрепить BNC кабель между пробником и осциллографом, и вы можете махать этой штукой во все стороны где есть электроника!
Во время испытаний, я установил плату в держатель, чтобы я мог двигаться. При экспериментах с ЭЛТ-мониторами результаты были особенно интригующими. Поля были сильными и даже менялись в зависимости от изображения на экране.
Все файлы прилагаются к статье, и вы можете скачать их, если хотите повторить это устройство.
Источник