Датчик качества воздуха своими руками

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Анализатор качества воздуха своими руками на основе Arduino и датчика Sharp GP2Y1014AU0F

Загрязнение воздуха является серьезной проблемой во многих городах, и индекс качества воздуха ухудшается с каждым днем. Согласно отчету Всемирной организации здравоохранения, больше людей погибает преждевременно от воздействия опасных частиц, присутствующих в воздухе, чем от автомобильных аварий. По данным Агентства по охране окружающей среды (EPA), воздух в помещении может быть в 2-5 раз токсичнее, чем воздух снаружи. Поэтому в сегодняшних реалиях желательно иметь под рукой анализатор качества воздух, который мы с вами создадим в рамках данного проекта.

В данном проекте мы собираемся соединить датчик Sharp GP2Y1014AU0F с Arduino Nano для измерения плотности пыли в воздухе. Помимо датчика пыли и Arduino Nano, для отображения измеренных значений также используется OLED-дисплей. Датчик пыли GP2Y1014AU0F компании Sharp очень эффективен для обнаружения очень мелких частиц, таких как сигаретный дым. Он разработан для использования в очистителях воздуха и кондиционерах.

Sharp GP2Y1014AU0F — это крошечный шестиконтактный оптический датчик качества воздуха / пыли с аналоговым выходом, предназначенный для обнаружения частиц пыли в воздухе. Работает по принципу лазерного рассеяния. Внутри модуля датчика инфракрасный излучающий диод и фотодатчик расположены по диагонали рядом с отверстием для впуска воздуха, как показано на следующем изображении.

Когда воздух, содержащий частицы пыли, попадает в камеру датчика, частицы пыли рассеивают свет ИК-светодиода в сторону фотодетектора. Интенсивность рассеянного света зависит от пылевых частиц. Чем больше в воздухе пылинок, тем больше яркость света. Выходное напряжение на выводе VOUT датчика изменяется в зависимости от интенсивности рассеянного света. Распиновка датчика следующая:

1 – V-LED питание светодиода (подключите к 5 В через резистор 150 Ом), 2 – LED-GND вывод заземления светодиода (подключить к GND), 3 – LED используется для включения/выключения светодиода (подключить к любому цифровому выводу Arduino), 4 – S-GND контакт заземления датчика (подключить к GND Arduino), 5 – VOUT вывод аналогового выхода датчика (подключить к любому аналоговому выводу), 6 – VCC положительный вывод питания (подключить к 5V Arduino).

Также в нашем проекте будет использоваться стандартный OLED-дисплей. OLED (Organic Light-Emitting Diodes) – это технология самосветового излучения, созданная путем размещения ряда органических тонких пленок между двумя проводниками. Яркий свет излучается, когда на эти пленки подается электрический ток. OLED-дисплеи используют ту же технологию, что и телевизоры, но имеют меньше пикселей, чем в большинстве наших телевизоров.

Схема подключения датчика Sharp GP2Y1014AU0F и сопутствующих компонентов к Arduino приведена далее:

Схема очень проста, поскольку мы подключаем только датчик GP2Y10 и модуль OLED-дисплея к Arduino Nano. Датчик GP2Y10 и модуль OLED-дисплея питаются от +5 В и заземления. Вывод V0 соединен с выводом A5 Arduino Nano. Вывод светодиода датчика подключен к цифровому выводу 12 на Arduino. Поскольку модуль OLED-дисплея использует связь SPI, мы установили связь SPI между модулем OLED и Arduino Nano. В качестве конденсатора используется конденсатор емкостью 220 мкФ, а резистор взят с сопротивлением 150 Ом.

Теперь перейдем к программной части. В коде используются библиотеки Adafruit_GFX и Adafruit_SSD1306. Эти библиотеки можно загрузить из диспетчера библиотек в среде разработки Arduino и установить оттуда.

Датчик пыли не требует какой-либо библиотеки, так как мы считываем значения напряжения непосредственно с аналогового вывода Arduino. Полный код Arduino приведен далее.

Как только оборудование и код готовы, пора проверить датчик. Для этого подключите Arduino к ноутбуку, выберите плату и порт и нажмите кнопку загрузки. Как вы можете видеть на изображении ниже, плотность пыли будет отображаться на OLED-дисплее.

Источник

Делаем систему контроля качества воздуха на Ардуино

В этом уроке на основе Ардуино и нескольких комплектующих мы сделаем систему контроля качества воздуха внутри помещений.

Комплектующие

Система контроля качества воздуха нам будет необходима для обнаружения токсичных газов в квартире или в доме.

Нам понадобятся несколько плат и сенсоров для системы контроля воздуха на Ардуино.

Читайте также:  Как сделать лимонную воду своими руками

Аппаратное обеспечение

  • Arduino Yun и Genuino Yun шилд × 1
  • Arduino Leonardo × 1
  • Arduino Yun × 1
  • Arduino MKR GSM 1400 × 1
  • Arduino MKR WAN 1300 × 1
  • Seeed Grove — сенсор газа (MQ2) × 1
  • Seeed Grove — сенсор качества воздуха v1.3 × 1
  • Android устройство × 1

Приложения

О проекте

Рейтинг загрязнений воздуха внутри помещений создается Агентством по охране окружающей среды США (EPA) и его Научным консультативным советом. Этот рейтинг входит в пятерку экологических рисков для общественного здоровья.

Средний человек тратит около 90% своего времени в помещении, так что плохое качество воздуха в помещениях (IAQ) представляет значительный риск для общественного здравоохранения. Плохое качество воздуха может вызвать повышенные краткосрочные проблемы со здоровьем, такие как усталость и тошнота, а также хронические респираторные заболевания, сердечные заболевания и рак легких.

По оценкам, ежегодные затраты и потери производительности в США составляют от 10 до 20 млрд. долларов, связанных с синдромом больного здания, который определяется для описания острых последствий для здоровья и дискомфорта, которые, как представляется, связаны с плохим качеством воздуха в помещении и временем, проведенным в здании.

В этом проекте мы собираемся сделать систему контроля качества воздуха внутри помещений. Наша система будет подключена к Интернету, и в результате каждый сможет удаленно визуализировать форму индекса качества воздуха в любом месте.

Американская градация качества воздуха выглядит таким образом:

В левом столбце — Индекс Качества Воздуха. В среднем столбце — Уровень Здоровья Человека. В третьем столбце — цветовой индикатор, который сигнализирует о качестве воздуха.

Структурная схема системы выглядит таким образом:

Возможные направления применения этой системы:

  • Дома и офисы
  • Промышленные помещения
  • Дистанционное зондирование для пожарных
  • Исследования и сельское хозяйство
  • Больницы и клиники

Оборудование и программы:

  • Широкий диапазон плат IoT с WiFi (MKR1000 и Yún Rev2) и GSM / узкополосная связь (MKR FOX 1200, MKR WAN 1300 и MKR GSM 1400). Для прототипирования этого проекта использована Ардуино Леонардо с шилдоим Yún.
  • Газовые датчики (MQ-2, 3, 7)
  • Датчик качества воздуха (MQ-135)
  • Android-устройство
  • Платформа разработки мобильных приложений
  • IoT облако
  • Перемычки/провода
  • Навыки программирования
  • Arduino IDE / Arduino Web IDE
  • Панель солнечных батарей для экологичного источника питания

Схема соединений

Датчик качества воздуха:

  • VCC на вывод 5V Arduino
  • GND на GND вывод Arduino
  • SIG на A3 пин Arduino

Датчик газа MQ-2:

  • VCC на вывод 5V Arduino
  • GND на вывод GND Arduino
  • SIG на A2 разъем Arduino

Датчик газа MQ-3:

  • VCC на вывод 5V Arduino
  • GND на вывод GND Arduino
  • SIG на вывод A1 Arduino

Загрузка прошивки

Скачайте прошивку (исходный код) и загрузите ее на плату Arduino. Перед загрузкой убедитесь, что у вас есть все библиотеки.

Подключение облака

Пожалуйста, обратитесь к разделу документации thinger.io для облачной связи — http://docs.thinger.io/arduino

Важно! Мобильное приложение на данный момент собирает данные из учетной записи автора и в результате, если устройство находится в отключенном режиме, мобильное приложение не отображает никаких данных (NaN).

Код устройства

Код для Ардуино вы можете скачать или скопировать ниже.

На видео можно увидеть прототип устройства системы контроля качества воздуха и его работу.

В планах на будущее этой системы могут быть добавлены следующие функции:

  • индикатор.
  • сигнал тревоги, основанный на зуммерах, когда обнаруживается высокая степень загрязнения.
  • push-уведомление пользователей в случае опасной ситуации.

Источник

Монитор качества воздуха в помещении

Замечательно жить на берегу горного озера, среди девственной, природы. Дышать только чистым, наполненным ароматом трав воздухом. Но мало у кого это получается. И в мегаполисе, дома и в офисе можно достигнуть максимально возможного качества воздуха.

Для этого в первую очередь надо видеть и понимать, что нас окружает? Каким воздухом мы дышем? Нам уже стали привычны термометры, барометры, приборы показывающие влажность. Но эти приборы ничего нам не говорят о качестве окружающего воздуха. А значит мы будем слушать советы, которые не всегда верны, руководствоваться слухами, не зная наверняка, правильно ли мы поступаем.

Один из таких мифов – что в городах отвратительный воздух, грязный и ядовитый. И вместо кислорода сплошные выхлопы от автомобилей. Мы воспринимаем это как данность, и не пытаемся исправить ситуацию, даже там, где способны это сделать, в собственном доме, или офисе. Даже те, у кого есть маленькие дети, или проблемы с аллергией, прикладывают свои усилия в слепую, не контролируя результатов.

Читайте также:  Как поставить доводчик стекол своими руками

Есть много полезных приборов позволяющих увеличить качество воздуха в нашем доме — увлажнители, ионизаторы, мойки воздуха, приточные вентиляции и фильтры.

Но этого недостаточно. Нужен прибор которым вы могли-бы непосредственно померять качество воздуха в вашем доме. Что бы Вам было понятно и очевидно чем Вы дышите. Как температура на градуснике.

Что может дать подобный прибор?

Многие думают что в мегаполисе воздух грязный именно на улице, где машины и заводы. А в помещении воздух чище. Но это совсем не так. Достаточно померять. Человек выдыхает в 100 раз больше СО2 чем вдыхает. И в герметично закрытом помещении, тем более, если присутствует несколько человек, воздух становится удушливым очень быстро. В доме много мебели и отделочных материалов, выделяющих токсичные вещества. В квартире быстро скапливается пыль, которая может нанести серьезный вред Вашему здоровью. Воздух в закрытом помещении в 4-8 раз грязнее чем на улице, и в 8-10 раз токсичнее. И Вы можете это померять и увидеть, если у вас есть соответствующие приборы. И понять как часто вам стоит проветривать помещение, в любую погоду.

Один из серьезных загрязнителей воздуха это пыль. Переносчик инфекций, любимая среда для клещей-сапрофитов и серьезный аллерген — пыль загрязняет воздух сильнее всего.

В доме, где есть аллергики, рекомендуют радикальные меры: гардины и портьеры поменять на жалюзи, убрать паласы, книги, декоративный текстиль и плюшевые игрушки. И даже мягкую мебель поменять на аналоги в кожаной обивке. Книги, сувениры, всякую мелочь – хранить под стеклом. И конечно важно знать что Ваши усилия не пропадают даром и количество пыли в доме минимально. А это тоже можно померять и увидеть.

Опасность таит и домашняя обстановка, мебель, лаки, краски, ДСП, МДФ, некоторые пластики могут выделять фенолы, формальдегиды и т.д. Совершено не важно, какой цены мебель из ДСП — все равно в воздух «полетят» вредные для организма соединения.

Но и с этой бедой можно эффективно бороться, в том числе проветриванием помещения. Просто надо видеть врага в лицо. Измерять и контролировать.

Собственно то, что я предлагаю — Прибор для контроля качества, основных параметров окружающего воздуха. который я сделал для себя. И делюсь с вами его конструкцией. Прибор доступен для самостоятельной сборки, любому кто мало-мальски умеет держать в руке паяльник.

В продолжении и развитии прошлой темы датчика СО2, я усовершенствовал прибор и предлагаю вашему вниманию новую версию, теперь уже комплексного мониторинга качества воздуха.

В прибор было добавлено еще 2 датчика. Датчик пыли PMS5003 и датчик формальдегида ZE08-CH20. Так же прибор обзавелся часами DS3231 и научился подавать звуки MP3-TF-16P. Были выкинуты датчик температуры и влажности. От них было мало толку. Из-за того, что начинка нагревается показания этих датчиков сильно отличались от реальности.

Основа прибора как и прежде контроллер ESP8266 dev kit 1 и датчик СО2 MH-Z19. Так же как в первой версии прибора датчик подключен по ШИМ. Для подключения остальных датчиков, экрана(все это висит на одних контактах) и модуля издающего звуки был использован аналоговый коммутатор 74HC4052. Контроллер последовательно подключается к датчику формальдегида и пыли. После этого переключается на экран и выводит информацию. Если наступает необходимость подать звуки, контроллер переключает коммутатор на звуковой модуль.

Датчики пыли, формальдегида и звуковой модуль общаются с контроллером посредством UART. В момент опроса датчиков, или воспроизведения звуков, UART контроллера переключается на альтернативные контакты и в этот момент невозможно общение по USB с компьютером.

В данной модели я использовал большой 2,8” экран, разрешением 240×320 точек. С интерфейсом SPI на базе контроллера ILI9341.

Никакого управления, кроме кнопки включения на приборе нет. Просто включаешь в розетку( в приборе встроен блок питания на 5v) и можно наблюдать за показаниями.

На экран выводится следующая информация: В верхнем левом углу часы с датой и месяцем. С право от часов выводится показания датчика формальдегида в µg/mᶟ. Следующий ряд, это показания датчика пыли. Тут 3 значения. Первое пыль диаметром меньше 1мкм, дальше частицы меньще 2,5 мкм и справа частицы до 10 мкм. Значения выводятся в µg/mᶟ. Под показаниями датчика пыли выведена строчка мелких цифр. Это для особо любознательных, тут перечислены значения счетчика частиц пыли разных фракций. Данные даны — количество частиц на 1л воздуха.

Читайте также:  Как построить печь для бани своими руками

Ниже график измерений содержания в воздухе углекислого газа СО2, приблизительно за последние полчаса.

В самом низу текущее значение концентрации СО2 в ppm. Справа светофорчик, сигнализирующий о опасности, или безопасности данной концентрации СО2. Зеленый сигнал говорит о том что концентрация меньше 900 ppm и хорошем качестве воздуха, желтый о душной обстановке и концентрации от 900 до 1500 ppm. Красный сигнал показывает что концентрация углекислого газа выше 1500ppm и это опасно для здоровья и плохо сказывается на самочувствии.

Когда уровень концентрации СО2 достигает 900ppm из прибора раздается чихание. Если уровень поднимается выше 1500ppm прибор «кашляет».

На лицевой стороне прибора имеется наклейка, на которой расписаны какие параметры прибора что обозначают и каковы нормальные, высоки и опасные концентрации газов и пыли.

Датчик СО2 MH-Z19 — Недиспергирую- инфракрасный датчик (или датчик NDIR) представляет собой простой спектроскопического датчик используемый в качестве детектора углекислого газа. Предел измерений до 5000ppm нижний предел около 400ppm(естественный уровень СО2 в атмосфере). Паспортная точность 50ppm. Время отклика около 30 секунд. При подаче питания первую минуту полторы выдает максимальные, или минимальные показания, потом включается и выдает реальные данные. Информация с датчика получается по ШИМ. В момент считывания контроллер измеряет скважность сигнала на выхоже датчика и по формуле преобразует его в уровень СО2.

Датчик пыли PMS5003. NDIR датчик пыли измеряющий концентрацию пыли с разбиением отдельно на 3 фракции 1, 2.5 и 10 микрон. Так же имеет счетчик частиц пыли разделенный на 6 фракций. Точность заявлена 10%. Датчик используется в активном режиме. Это значит что он сам автоматически через установленные промежутки времени посылает информацию в UART. Когда необходимо получить информацию с датчика, контроллер подключается к нему по средствам коммутатора и ожидает очередной посылки данных.

Датчик формальдегида ZE08-CH2O Электрохимический датчик термостабилизированный. Этот датчик так же используется в активном режиме. Он самостоятельно, каждую секунду посылает данные в UART и когда контроллер переключает на него коммутатор, происходит считывание данных.

Для извлечения различных звуков и звуковой сигнализации о состоянии воздуха используется миниатюрный mp3 плеер управляемый по UART — MP3-TF-16P. Данная плата имеет на борту считыватель микро SD карты, на которую записываются звуковые файлы в mp3 формате. Также имеется усилитель мощности и может быть подключен динамик на 8ом. Выбор и воспроизведение файлов записанных на sd карточку управляется по UART с контроллера устройства. В программу встроена защита от оповещения в ночное время. После 22:00 и до 8:00 звуковой сигнал не подается.

Для вывода на экран времени и даты используется модуль часов DS3231, который работает по протоколу I2C. Заявленная точность 2 минуты в год.

Для переключения основного контроллера ESP8266 между датчиками, экраном и звуковым модулем используется аналоговый коммутатор 74HC4052. Это сдвоенный коммутатор на 4 линии. ESP8266 использует для UART выводы D9, D10 но мы не можем использовать эти выводы, так как они подключены к встроенному на плату контроллера адаптеру USB. К счастью есть возможность переключать выходы UART на альтернативные контакты D7, D8. Но эти же контакты использует шина ISP по которой контроллер подключен к дисплею. Для того, что бы разобраться с этим зоопарком и используется коммутатор. Он имеет 2 входа и по 4 выхода. В один момент каждый вход может быть подключен к одному из 4 выходов. К каждому выходу подключен датчик, или дисплей, или звуковой модуль. По управляющим пинам контроллер выбирает к какому устройству нужно подключиться в данный момент. При выводе на экран контроллер подключается к дисплею, при считывании данных к датчику, а при воспроизведении звуков к mp3 плееру.

Так же в приборе используется вентилятор, который продувает закрытый корпус воздухом, что бы датчики адекватно реагировали на изменения атмосферы вокруг прибора. Скоростью вентилятора управляет контроллер, так как если ее не снижать вентилятор слишком сильно гудит.

Общий цикл опроса датчиков и вывода на экран информации составляет 5 секунд.

Источник

Оцените статью