Три простые схемы датчиков освещенности
Датчики освещенности или так называемые фотодатчики, по своей сути, устройства несложные. При желании простое изделие такого рода можно вполне собрать самостоятельно, имея элементарные навыки чтения электронных схем и умение держать в руках паяльник. Подобное устройство может управлять, например, включением или выключением какого-нибудь бытового прибора в зависимости от освещенности того места, где установлен датчик.
Так или иначе, схемы фотодатчиков весьма просты. Три из них, давно зарекомендовавшие себя и считающиеся классическими, мы и рассмотрим ниже. С их помощью можно будет легко автоматизировать то, что может нуждаться в такой автоматизации.
Сигнализация при затемнении с функцией ручного сброса
На данном рисунке представлена классическая и очень простая схема, могущая стать основой для системы охранной сигнализации, работающей по принципу детектора падающего светового потока:
В качестве индикатора срабатывания здесь используется светодиод (обозначенный как LED), который начинает светиться в момент, когда на фоторезистор PR не попадает достаточного количества света. Свет может быть естественным или искусственным, в зависимости от того места, где будет установлено данное устройство.
Если датчик установить в жилом помещении, то это будет, например, сигнализация контроля определенной зоны в доме. Если же установку произвести на улице, то к срабатыванию устройства побудит либо наступление сумерек, либо в светлое время суток — пересечение рабочей зоны датчика посторонним движущимся объектом.
Схема работает очень просто. Пока на датчик PR попадает достаточно света, его электрическое сопротивление постоянному току очень мало, следовательно в цепи постоянного тока данного устройства при указанном напряжении питания (от 10 до 18 вольт) вместе с резистором R1 образован такой делитель напряжения, что на элементе PR падение напряжения настолько мало, что этого напряжения не хватит чтобы тиристор VS перешел в проводящее состояние.
Конденсатор C1 практически шунтирован элементом PR. Но как только световой поток значительно уменьшится или прервется, сопротивление чувствительного элемента PR тут же вернется к значению в несколько мегаом! В этот момент параметры делителя напряжения радикально изменятся, напряжение повысится, и от источника питания U через резистор R1 начнет активно заряжаться конденсатор C1.
Как только напряжение на конденсаторе C1 достигнет напряжения отпирания тиристора VS (в районе 1 вольта), он тут же перейдет в проводящее состояние и светодиод LED получит питание через ограничительный резистор R2.
Чтобы переключить датчик в исходное состояние достаточно замкнуть кнопку S (здесь может быть установлена кнопка без фиксации или микропереключатель), а затем отпустить ее — ток через тиристор прекратится, он снова будет «ожидать», пока датчик освещенности PR не окажется затемнен.
Принципиально вместо светодиода LED с ограничительным резистором R2 в схему можно установить слаботочное электромагнитное реле с током срабатывания в районе 20 мА и с подходящим напряжением питания. Очевидно, если напряжение питания сделать больше или меньше, то и включающееся при отпирании тиристора устройство также должно быть соответствующим, то есть рассчитанным на установленное на входе схемы напряжение.
Тиристор в принципе может быть любым из тех, что применяют в устройствах плавного пуска коллекторных двигателей или в диммерах, главное чтобы параметры тиристора по току и нарпяжению обеспечивали запас относительно параметров нагрузки.
Фотодатчик PR при необходимости можно составить из нескольких соединенных параллельно элементов, с тем чтобы повысить его чувствительность. Конденсатор С1 лучше выбрать пленочный. Конденсатор фильтра по питанию C2 – чем больше — тем лучше, однако при небольшой мощности потребителя, такого как светодиод или реле, достаточно и 100 мкФ. Питание схемы осуществляется от блока питания или от набора аккумуляторов.
Датчик освещенности с регулировкой чувствительности на базе операционного усилителя
Данная схема, в отличие от предыдущей, чуть-чуть усложнена. Сюда добавлен компаратор, включенный по схеме операционного усилителя с петлей положительной обратной связи, получаемой при помощи внедренного в схему резистора R4. Операционный усилитель DA с резистором R4 защищен таким образом от паразитных колебаний и самовозбуждения.
Постоянное питание 12 вольт подается на слаботочное реле, срабатывание которого наступает в момент снижения освещенности чувствительного элемента PR, что приводит к коммутации цепи исполнительного устройства. Чувствительность фотодатчика, построенного по данной схеме, настраивается регулировкой подстроечного резистора R3.
Для защиты транзистора VT от индуктивных выбросов с обмотки реле К (в момент резкого размыкания цепи транзистором VT), в схему включен защитный диод VD. Операционный усилитель может быть использован любой подходящий. А за подавление высокочастотных помех по питающему напряжению отвечает конденсатор C, емкости которого в 47 нФ вполне достаточно.
Итак, пока на чувствительный элемент PR датчика освещенности падает достаточное количество света, его сопротивление мало. Соответственно делитель напряжения, образованный элементами PR и R1 дает на входе №2 операционного усилителя (на неинвертирующем его входе) потенциал больший, чем на входе №3 (на инвертирующем входе операционного усилителя).
В таком состоянии на выходе операционного усилителя будет минимальный уровень напряжения и транзистор VT не откроется, так как напряжение (определяемое делителем на резисторах R5 и R6) и ток его базы (ограничиваемый резистором R5) находятся на уровне нуля. В такой ситуации обмотка реле К не получает питания.
Как только освещенность элемента PR окажется настолько слабой, что его сопротивление повысится до такой степени, что потенциал на входе №2 операционного усилителя окажется ниже потенциала на его входе №1, в этот момент на выходе ОУ появится напряжение высокого уровня, которое приведет к отпиранию транзистора VT и к питанию через него обмотки реле К, коммутирующего исполнительное устройство. Исполнительным устройством может выступать лампа, сирена, электрический замок и т.д.
Фотореле на 555 таймере
Для включения ночного освещения на территории приусадебного участка или возле подъезда, отлично подойдет это несложное устройство на базе популярной микросхемы 555.
Когда на чувствительный фоторезистор PR падает достаточное количество света, его сопротивление сильно снижено, так что через делитель напряжения на резисторе R1 и сопротивлении элемента PR, на базу транзистора VT поступает очень слабый ток, недостаточный для отпирания данного транзистора.
Если освещенность уменьшается, сопротивление PR возрастает, и напряжение и ток базы транзистора VT увеличиваются, что приводит в свою очередь к тому, что транзистор VT переходит в проводящее состояние. Обмотка реле К1 активируется и коммутирует тиристор VS анодом к плюсовой шине питания.
Таймер 555 запускается, и на выводе №3 данной микросхемы появляется напряжение 10,5 В. Данное напряжение способно питать обмотку маломощного реле К2 (с током потребления обмотки до 250 мА).
Реле К2 коммутирует нагрузку, например лампу системы освещения во дворе и т.п. Главное условие — чтобы реле К2 допускало пропускание через себя номинального тока нагрузки и при этом не перегревалось. При восходе солнца лампа погаснет (по принципу, аналогичному схеме №2)
Характеристики пассивных и активных элементов, приведенных на данных принципиальных схемах, подбираются исходя из величины напряжения и возможностей источника питания, а также в соответствии с параметрами нагрузки, включение и выключение которой призвана автоматизировать та или иная собираемая схема.
Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!
Записывайтесь в онлайн-университет от GeekBrains:
Изучить C, механизмы отладки и программирования микроконтроллеров;
Получить опыт работы с реальными проектами, в команде и самостоятельно;
Получить удостоверение и сертификат, подтверждающие полученные знания.
Starter box для первых экспериментов в подарок!
После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.
Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.
Источник
Делаем датчик освещенности (фотореле)
Поскольку время закатов и рассветов зависит от времени года, значит применять суточные таймеры на включение освещения – это невыход из сложившейся ситуации. И тут на помощь всегда придет датчик освещенности или иными словами фотореле. Это устройство, регистрирующее интенсивность света, попадающего на него. То есть когда солнце взойдет и света будет много, на выходе автоматически установится лог.1, а когда солнце заходит за горизонт – лог.0 и происходит автоматическое выключение света до наступления следующего утра. Область, в которой можно применять такой датчик освещения, достаточно велика и ограничивается лишь вашей фантазией. Их часто используют для подсветки шкафов с целью освещать его при открытии дверей.
На рисунке ниже вы увидите схему датчика освещенности:
Ключевая деталь схемы – фоторезистор, на рисунке обозначен как R4. Его сопротивление зависит от света, который попадает на него. То есть чем его больше, тем сильнее уменьшается сопротивление. Поскольку фоторезистор – деталь весьма дефицитная, то можно применять любой, который найдете.
Можно использовать импортные фоторезисторы. Они компактные, но цена на них порой «кусается». Вот несколько примеров импортных фоторезисторов: GL5516 и VT93N1.
Есть и отечественные фоторезисторы, к примеру, СФ-21 или ФСД-1, которые тоже можно использовать. Такие фоторезисторы и работать будут не хуже, и стоят намного меньше.
Если вдруг сложилось так, что очень нужен датчик освещенности, но неоткуда взять фоторезистор – выход есть всегда. Возьмите старый германиевый транзистор в круглом металлическом корпусе и отпилите от него верхушку. Такая манипуляция позволит оголить кристалл транзистора. На фото ниже вы можете увидеть такой транзистор. Открывая крышку, старайтесь не повредить кристалл. Для этого подойдут любые доступные у вас резисторы в круглом корпусе, к примеру, советские германиевые МП14, МП101, МП16, П27, П29. После того, как кристалл «модифицированного» транзистора открыт, сопротивление перехода К-Э будет напрямую зависеть от интенсивности света, падающего на кристалл. Вместо фоторезистора нужно впаять эмиттер транзистора и коллектор, вывод базы нужно просто откусить и все.
В схеме использован операционный усилитель. Также вы можете подобрать любой другой одинарный усилитель, главное, чтобы он подходил по цоколю. К примеру, есть широко используемые и доступные усилители TL081 и TL071. Транзистор, представленный в схеме – любой маломощный, имеющий структуру NPN. В нашем случае прекрасно подойдут KT3102, BC547 или КТ503. Этот транзистор хорошо коммутирует нагрузку. Как нагрузку можно использовать реле или небольшой отрезок светодиодной ленты. Если нагрузка мощная – подключайте ее с помощью реле. В схеме вы также можете увидеть диод D1, он предназначен для гашения импульсов самоиндукции обмотки реле. К выходу OUT подключают нагрузку. Питание схемы равно напряжению в 12 вольт. От выбора фоторезистора и будет зависеть номинал подстроечного резистора. Если у фоторезистора среднее сопротивление в 50 кОм – подстроечный резистор должен иметь большее сопротивление раза в два-три так точно (100-150 кОм). У резистора с рисунка СФД-1 сопротивление равное более 2МОм, а подстроечный резистор в свою очередь рассчитан на 5 МОм. Бывают фоторезисторы с меньшим количеством «Мом».
Как собрать датчик освещенности
Для того, чтобы собрать наш датчик освещенности – переходим от слов к действиям. Первым делом нужно соорудить печатную плату. Для этого воспользуйтесь методом ЛУТ. К статье я добавил и файл с печатной платой. Запомните! Перед печатью отзеркаливать не нужно. Скачать плату: тут Вы не можете скачивать файлы с нашего сервера
Плата, которую вы увидите на рисунке ниже, рассчитывалась на установку фоторезистора ФСД-1 (отечественный) и подстроечного резистора СА14NV. Также я добавил вам несколько фотографий из самого процесса.
После того, как вы закончили с изготовлением печатной платы, можно приступать к впайке деталей. Все детали нужно устанавливать поочередно: резисторы, диод, а позже все другое.
В саму последнюю очередь делается впайка самых крупных деталей, таких как подстроечный резистор и фотодиод. Для удобства выведите провода через клемники. После окончания процесса впайки удалите с платы флюс, прозвоните все соседние дорожки замыкание и проверьте правильность проделанного монтажа. Только после того, как вы проведете все нужные манипуляции – подавайте питание на плату.
Как настроить датчик
Во время первого включения светодиод, расположенный на плате, либо будет полностью погашен, либо будет светится. Чтобы изменить состояние светодиода – аккуратно вращайте подстроечный резистор. Наглядно увидеть работу датчика вы можете, посмотрев видео ниже. Вдохновенья вам и успехов в начинаниях!
Источник
Фотореле для светодиодной кухонной подсветки своими руками
Пришёл в гости друг с вопросом – а можно ли сделать фотореле для светодиодной кухонной подсветки? Подсветка самодельная – метр обычной светодиодной ленты с потребляемым током 0,3 А. Напряжение питание будет не очень стабильное – что то около 11 В. Нужно чтобы при наступлении вечерних сумерек освещение включалось, а при окончании утренних выключалось. Контроль уровня освещённости должен иметь петлю гистерезиса для того, чтобы исключить мерцание при включении освещения.
Конечно же, сразу захотелось сказать «да не вопрос, чего там делать-то!». Но решил сказать «надо попробовать» — мало ли чего, вот например, совсем не помню, какие есть в наличии фоточувствительные приборы…
И, в общем, правильно сделал, что не стал торопиться. Оказалось, что есть только фотодиоды ФД-8К и два фоторезистора разных типов – один, похоже, импортный со стёртой маркировкой, второй – наш «советский» ФСД-1 (немного «покоцаный» за долгую жизнь) (рис.1). Во время экспериментов оказалось, что собирать простую схему намного проще на опторезисторе, так как фотодиод имеет большую чувствительность и, кроме того, что нужный порог срабатывания поймать достаточно трудно, так ещё и нужно качественное питание, без пульсаций и просадок, чтобы этот порог не менялся.
В общем, после небольших экспериментов и макетирования «воздушным монтажом» (рис.2) родилась схема, показанная на рисунке 3.
Датчиком освещённости является фоторезистор R1, образующий совместно с подстроечным резистором R2 делитель напряжения с возможностью изменения уровня контролируемого напряжения. Цепочка R3С1 – фильтр низкой частоты с частотой среза около 9 Гц (по -3dB). На транзисторах VT1 и VT2 собран триггер Шмита, обладающий петлёй гистерезиса (принципиальная схема взята из [1], стр.301) с порогами срабатывания около 0,63 В и 1,7 В при напряжении питания 12 В (величина петли определяется сопротивлением резистора R6 – чем меньше сопротивление, тем меньше разница между порогами срабатывания). При питании 10 В границы смещаются вниз – 0,62 В и 1,5 В. Выходной сигнал триггера управляет транзистором VT3, нагрузкой которого является светодиодная лента LS603 длиной 1 метр (рис.4). Резистор R7 ограничивает ток базы VT3. Падение напряжения на этом транзисторе в открытом состоянии не превышает 140 мВ.
Было собрана два варианта плат – с обычными выводными деталями и с SMD монтажом. Первый вариант был оставлен себе, второй отдан другу. На рисунке 5 показаны этапы изготовления фотореле с SMD деталями – голая плата, плата с деталями, настройка и то, что в итоге получилось в корпусе и было отдано на установку (схема на рисунке 6.) Некоторые номиналы резисторов отличаются от указанных на рисунке 3, транзисторы применены PMSS3904 (маркировка р04) и FMMT2907A (маркировка 2F). В самый последний момент в схему был добавлен ещё один подстроечный резистор сопротивлением 4,7 кОм – он установлен параллельно R5. Это даёт возможность менять границы петли гистерезиса (на схеме не показан, тип резистора – СП3-4бМ).
Все детали взяты со старых компьютерных плат (рис.7) – материнок, видеокарт и сетевых карт. Замена элементов может быть разнообразной, главное – это чтобы ток через резистор R7 не превышал максимального значения для VT3 и чтобы ток потребления светодиодной ленты не превышал максимального значения тока коллектора VT3. Также следует учитывать соотношение сопротивлений резисторов R4R5R6, так как при «малой петле» гистерезиса возможно моргание ленты, а при очень «большой» есть вероятность, что освещение отключится только к полудню или даже не отключится вовсе в сумрачные дни.
Для питания фотореле подойдут любые блоки питания – импульсные или трансформаторные (рис.8), главное, чтобы они могли долговременно работать с тем током, что потребляет лента (не менее 0,3 А) и чтобы их выходное напряжение было выпрямлено и отфильтровано и находилось в нужных пределах (11 В…13 В).
В результате всех этих экспериментов в моём варианте подсветка получилась достаточно яркой (рис.9.), хотя ещё не полностью сделана над электрической плитой.
Выше была показана печатная плата с резанными дорожками, но в приложении к тексту находится файл разводки печатной платы в программе Sprint-Layout для варианта с SMD деталями (размер 10мм х 24мм). Вид сделан со стороны печати, при изготовлении по лазерно-утюжной технологии нужно включить режим «зеркально».
Естественно, автоматическое включение подсветки можно использовать не только на кухне — можно оформить компьютерный стол, можно применить в комнатах, коридоре, мастерской или гараже.
Литература.
1. Горошков Б.И., «Радиоэлектронные устройства», Москва, «Радио и связь», 1984.
Андрей Гольцов, r9o-11, г. Искитим, август 2018
Источник