Как сделать датчик уровня воды своими руками
Что такое датчик уровня воды «Геркон»
Геркон («герметичный контакт») представляет собой электронное устройство в виде вытянутой стеклянной колбочки с откачанным воздухом, в которой находятся два металлических ферромагнитных контакта. Контакты в обычном состоянии разомкнуты. Они замыкаются и замыкают цепь тогда, когда попадают в магнитное поле.
К преимуществам герконов отнесем:
- надежность, которая в 100 раз больше, чем у обычных открытых контактов;
- быстродействие;
- срок службы, достигающий 5 млрд. срабатываний, намного превышает обычные контакты.
- малая коммутируемая мощность;
- малое число контактных групп в одном баллоне;
- хрупкость стеклянного баллона;
- чувствительность к внешним полям.
Преимущества Герконов намного превосходят его недостатки.
Прин
Как собрать датчик уровня воды
Вариант 1
Для сборки датчика уровня воды понадобится:
- два одноразовых шприца 10 мл и 2 мл;
- прозрачная гелевая ручка;
- неодимовый магнит небольшого размера;
- герконы — 2 шт.
Два Геркона необходимо для отслеживания повышения и понижения уровня воды. Если нужно контролировать либо повышение, либо понижение уровня, то достаточно одного Геркона. Если несколько Герконов установить последовательно, то можно отслеживать ступенчатое изменение уровня воды.
Подробную сборку и испытания датчика в работе можно посмотреть на видео в конце страницы.
Вариант 2
Еще один пример самостоятельного изготовления датчика уровня воды. Датчик был установлен на пластиковой трубе канализационного септика частного загородного дома. Назначение датчика — контроль заполнения резервуара септика сточной водой.
Работа датчика основана на перемещении магнита по оси, на которой закреплены два Геркона. При замыкании контактов Геркона включается световой сигнал определенного цвета, сигнализирующий о степени заполнения септика.
Когда поплавок находится в нижнем положении, горит светодиод зеленого цвета HL1 и работает второй Геркон. Уровень жидкости находятся ниже поплавка, ограниченного стопором, и контакты Геркона замкнуты магнитом. По мере заполнения септика и поднятия уровня сточной воды магнит перемещается и включает желтый светодиод HL2, отключив HL1. При максимальном уровне жидкости включается светодиод красного цвета HL3, а желтый отключится. Если поплавок или магнит несправны (поломка стопора, смещение магнита, опрокидывание поплавка), то гореть должен будет желтый светодиод. Если в схеме использовать реле, то можно применять его, как исполнительное устройство для более мощных нагрузок. Ко второму Геркону также можно подключить зуммер или сотовый телефон и т.д.
Материалы для изготовления датчика уровня воды
- муфта соединительная д. 50 мм, 2 шт.;
- заглушка д. 50 мм, 2 шт.;
- хомуты пластиковые, 2 шт.;
- профили пластиковые мебельные;
- кембрик термоусадочный д.30-40 мм;
- пластмассовая пластина т. 4-6 мм;
- заклепки 10 шт.;
- магнит неодимовый 1 шт.;
- герконы 3 контакта, 2 шт.;
- кнопка (выключатель) низковольтный 1 шт.;
- резистор 680-1,5к. 1 шт.;
- светодиоды, 3 шт.;
- провода низковольтные 5-и жильные;
- штекер 4 ножки;
- термоклей, силикон;
- питание 12В, батарейка на 3В.
Из инструментов понадобятся:
- электродрель;
- термопистолет;
- строительный фен;
- паяльник;
- отвертки, пассатижи и т.д.
Схема датчика уровня воды
Схему датчика уровня воды для изготовления своими руками следует выбирать в зависимости от технологических задач, которые предстоит решать датчику, и условий, в которых он будет работать. Вариантами схем может быть светодиодная индикация, управление насосным оборудованием в автоматическом и ручном режиме, звуковая сигнализация и т.д. Любые варианты схем можно легко найти на интернет сайтах соответствующей тематики.
Источник
Набор для сборки датчика уровня
Всем привет. Сегодня речь пойдет об очень простом наборе для самостоятельной сборки прибора, для контроля уровень воды. Данный набор может с успехом распаять школьник 5-7 класса за один вечер. Можно конечно сделать и полностью самостоятельно, включая плату, но я решил сэкономить время, поэтому был заказан набор.
Набор был приобретен с целью хоть как то автоматизировать набор воды в бочку на даче. При чем это не совсем бочка, а скорее труба, уходящая вниз на 2.5-3 метра, поэтому запасы воды там приличные (для простоты пусть будет бочка). Задумка была простая, пока нет регулярного водоснабжения электроклапан открывается и набирает в бочку воды по заданный уровень. Расход воды ведрами по необходимости и автоматический долив в бочку. Для того что бы клапан часто не срабатывал от колебаний воды, задумано несколько уровней. Нижний при котором включается клапан и верхний при котором выключается. Т.е. есть определенная мертвая зона при которой расход воды есть, а подача воды в бочку пока отсутствует. Кстати, эта мертвая зона и есть фактически такое понятие, как гистерезис.
В прошлом году эту функцию выполняло такое пардон устройство, как поплавковый механизм из бачка унитаза. Работало исправно, изредка засорялось, поскольку вода поступает по трубам прямиком из реки. Но в итоге зиму не пережило, поскольку было выполнено из пластмассы и развалилось от мороза.
Данный набор был призван заменить вышедший из строя механизм.
По мере хранения собранной платы и ожидании дачного сезона, была произведена попытка применить собранную плату на производстве, вот на такой установке.
Это просто большая кастрюля с нагревателем типа ТЭНов мощностью 27 КВт. Продукцию достают из холодильника целыми поддонами и закладывают в кострюлю. Надо все это нагреть до 90 С. Представляете сколько электроэнергии тратится ежесуточно?!
Продукция между прочим представляет из себя свиные желудки и кудрявку (часть кишков).
Насколько я знаю желудки чем то набивают и употребляют в пищу, с кишками примерно то же самое — в том числе и колбасы с сосисками.
Это дело варится и повторно замораживается. Далее отправляется в Китай. Вот так вот, круговорот товара в природе. Мы им натуральные субпродукты, а в ответ электронику.
Назрел вопрос перевести нагрев кастрюли на пар. Так экономнее и мощность выше. Производительность вырастает в разы. Вот тут и потребовался датчик уровня, что бы никого паром не обварило и пар подавался только тогда, когда в емкости присутствует хотя бы минимальное количество воды.
Однако я вовремя спохватился и отказался от окончательной установки, хотя испытания показали работоспособность платы. Применять на производстве самоделки противопоказано. Поэтому нашли менее оперативно нужный прибор, который выполняет те же функции, но имеет еще и сертификат. Принцип работы заводского прибора практически соответствует набору с интернет магазина и в конкретном случае выполняет те же функции.
Этот прибор отечественного производства Овен САУ-М7.
В небольшом пакетике «кучка» деталей, плата и провода.
По номиналам я не сортировал, просто разложил для наглядности.
Схема не простая, а очень простая. Используется 4 элемента 2И-НЕ, при чем два из них выполняют функцию триггера. Он нужен для формирования петли гистерезиса.
Контакты 1 и 2 разъема J3 дают сигнал о нижнем уровне и включают реле. Контакты J4 1 и 2 — верхний уровень и аварийный, при срабатывании любого из них реле выключается. Срабатывание реле дублируется зажиганием светодиода. Схема уверенно срабатывает на водопроводную воду и так же уверенно на воду после водоподготовки, в которой солей меньше.
Я собирал плату практически не глядя в схему, разве что номинал резисторов посмотрел.
Перепутать выводы маловероятно и даже установить такие детали, как разъемы или транзисторы неправильно помешает нанесенная шелкография.
Единственный минус при монтаже — я перепутал местами светодиоды. Но это так, мелочи, на работоспособность не влияют.
В качестве датчиков были применены самодельные датчики уровня кондуктометрического типа. Примерно вот так они выглядят в сборе:
На плате со стороны установки деталей нанесена шелкография, вполне качественная.
Процесс распайки деталей вам не будет интересен, поскольку я не являюсь сборщиком и не владею особенностями тех процесса по сборке плат. Что в руку попалось с краю, то и запаивал.
Печатная плата со стороны пайки покрыта защитной маской. Металлизации нет. Плата односторонняя.
Использовал припой типа ПОС 61 с канифолью. Насвинячил немного.
Провода питания зафиксировал герметиком, что бы не обломались на выходе из отверстий. Провода, что шли в комплекте, мне показались слишком короткими.
Плату помыл растворителем со спиртом и покрыл слоем Plastik 70. Сразу заметил разницу между моими прежними платами и этой. Поверхность блестит и контакты покрыты слоем пленки.
Выявился некоторое неудобство, которое на самом деле является плюсом. Хотел снять видео о работе платы с использованием мультиметра, а получил проблему в виде того, что цупы, банально не продавливают покрытие защитное. Поэтому в видео отсутствует мультиметр.
Видео демонстрации работы платы:
Upd: пока писал обзор, на страницу с товаром даже не обращал внимание, как обычно. И только после написания обзора обратил внимание на товар. Плата не совпадает с той, что мне прислали и судя по комментариям многим высылают два разных варианта платы. На функционале это не сказывается. Обе платы работоспособны.
Итоги: Простейший набор, доступен для школьников, так же имеет практическое применение. К покупке рекомендую. Осадок небольшой остался из за того, что плата пришла не та, которая в описании.
В моем случае оказались лишними провода. Вероятно они планировались для вывода из платы светодиодов на переднюю панель и подключения источника питания.
Источник
Как сделать датчик уровня воды
Шаг второй: изготовление датчика
Для изготовления датчика необходимо напечатать на 3D-принтере рамку. Длина рамки 10 см.
Затем нужно протянуть проволоку через отверстия сбоку, как показано на фото, обрезать ее на пару сантиметров длиннее рамки с обеих сторон и повторить процесс для всех остальных отверстий.
В конце нужно согнуть проволоку и спаять концы вместе. Дальше припаять по одному кабелю-перемычке с каждого конца.
Файл для печати можно скачать ниже.
WaterLevelSensor_Frame.stl
Сначала нужно раскомментировать строку 25 ‘Serial.println (sensorVal). Дальше открываем Serial Monitor (в правом верхнем углу IDE Arduino) и смотрим, какие там значения будут. Аналоговый вход Arduino принимает напряжения от 0 до 5 В и преобразует их в значения от 0 до 1024. Поскольку самодельный датчик подключен непосредственно к Arduino и не имеет схемы для стабилизации значений, они будут довольно нестабильными.
Верхний предел должен быть приблизительно равным значению, которое можно прочитать на серийном мониторе. В данном случае это где-то около 550. Нужно изменить значение переменной upperLimit на это значение.
Дальше полностью погружаем датчик в воду и смотрим, как изменится последовательный выход. Меняем переменную lowerLimit на данное значение.
Для получения точного показания нужно иметь большую разницу между верхним и нижним пределами. Если они близки друг к другу, уже небольшое изменение значения из-за нестабильности сильно изменит показание. Лучше всего, чтобы верхний и нижний предел находились на расстоянии нескольких сотен цифр друг от друга.
Источник