Датчик вибрации для осциллографа своими руками

Схема чувствительного датчика вибрации

Схема простого, но чувствительного датчика вибрации на ОУ LM358. Устройство наладки не требует и начинает работать сразу. Реагирует на шаги с расстояния в несколько метров.

Схема вибродатчика показана на рисунке ниже:

В качестве датчика используется плоский пьезоизлучатель от наручных часов либо похожий. Провод от центральной пластины пьезоэлемента подключается ко входу ОУ. Сам пьезоэлемент закрепляется на контролируемой поверхности. Для усиления чувствительности к основанию пьезоэлемента можно прикрепить небольшую пружинку с грузиком таким образом, чтобы пьезоэлемент работал на изгиб. В спокойном состоянии напряжение на неинвертирующем входе U1 на несколько милливольт ниже, чем на инвертирующем. Поэтому на выходе U1 (выв.1) присутсвует напряжение, близкое к 0 (лог.0). При появлении вибрации на выводе 3 ОУ появляется дополнительное напряжение, которое в сумме с постоянным напряжением от делителя R3-R1-R2 оказывается выше, чем на выводе 2. ОУ переключается, и на его выходе появляется напряжение, близкое к напряжению питания (лог. 1). Таким образом, на выходе датчика формируются прямоугольные импульсы в такт с вибрацией. Выходной сигнал подается на 2 контакт разъема J1.

Резистором R1 подбирается чувствительность датчика. Его номинал может колебаться от 0.33 Ом до 10 Ом. Чем меньше сопротивление — тем выше чувствительность. Кондерсатор С1 выполняет роль фильтра, исключая ложное срабатывание от одиночных импульсов. Резисторы R2 и R3 должны быть одинакового сопротивления от 1 до 3 кОм. Резисторы R4 и R5 тоже должны быть одинакового сопротивления от 47 до 200 кОм.

Датчик может питаться напряженим от 4 до 12 вольт. Резистор R6 ограничивает выходной ток в случае напряжения питания больше 5 вольт и чувствительной нагрузке на выходе. Выход датчика модет быть подключен к микроконтроллеру или транзистору, управляющему, например, реле. Также к выходу датчика может быть подключен светодиод или вольтметр.

Датчик может быть собран на печатной плате, чертеж которой представлен на рисунке:

Пьезолемент подключется через разъем слева. Провода к нему должны быть скручены между собой.

Источник

Датчик вибрации для осциллографа своими руками

Чаще всего при диагностике осциллографом мы пользуемся стандартным набором диагностических датчиков и аксессуаров: линейки для экспресс-диагностики системы зажигания, щупы для подключения к датчикам автомобиля, датчиками давления и разрежения. И забываем, что в нашем арсенале инструментов имеются и другие, об одном из которых пойдёт речь в этой статье.

Датчик вибрации представляет из себя пьезоэлектрический элемент, заключенный в металлический корпус и подключаемый к осциллографу.
Работа такого датчика основана на прямом пьезоэлектрическом эффекте, а именно на преобразовании механической энергии в электрическую.
Как правило, такие датчики при диагностике устанавливается на топливопроводы для оценки работы форсунок (дизельных или бензиновых).
За счёт деформации топливопровода из-за изменяющегося внутри него давления, на выходе датчика формируется изменяющееся напряжение, которое и регистрирует осциллограф.

В данной статье я постараюсь показать как это выглядит на практике и какие возможности открываются в диагностике.

Производим необходимые подключения: датчик устанавливается на общий топливопровод.

Кабель датчика подключаем к первому каналу осциллографа.

Для того, чтобы определить, какая форсунка ведёт себя неправильно, подключаем высоковольтный датчик на ВВ-провод первого цилиндра. Синхронизацию подключаем ко второму каналу осциллографа.

Запускаем двигатель и после некоторого количества регулировок для читаемости осциллограммы получаем следующее:

Сигнал выглядит весьма зашумленным из-за общей вибрации двигателя автомобиля, но и в этом случае мы можем получить интересующую нас информацию.
При внимательном рассмотрении заметны цикличные усиления сигнала на первом канале, которые соответствуют
моменту впрыска топливных форсунок. При диагностике следует учитывать, что импульс, стоящий рядом с высоковольтным импульсом первого цилиндра, соответствует впрыску в 4-ом цилиндре (для четырёхцилиндрового двигателя, работающего по циклу 1-3-4-2), так как в момент искрообразования в первом цилиндре и начале рабочего хода поршня формируется топливо-воздушная смесь и производится её забор именно в 4-ом цилиндре.

Чтобы продемонстрировать, что произойдёт если одна из форсунок откажет в работе и перестанет впрыскивать топливо, программным способом отключим первую форсунку:


Как видно из приложенного видеофайла, после отключения форсунки на осциллограмме пропала группа импульсов, соответствующая впрыску первой форсунки.
Более наглядно это можно увидеть в другой программе:

Здесь серия импульсов соответствует открывающейся форсунке

А здесь ничего не происходит, так как давление в топливной рампе не меняется.

Импульсы синхронизации по второму каналу появились случайным образом после подключения сканера для программного управления форсункой, ими можно пренебречь.

Можно сделать вывод, что датчик вибрации весьма полезный инструмент в руках диагноста.
Он позволяет отслеживать работу форсунок в бензиновых двигателях, особенно в тех случаях, когда её невозможно или трудоёмко оценить обычными способами (осциллографирование сигнала с разъема форсунки или с помощью скрипта эффективности цилиндров).
В дизельных системах типа Common Rail датчик вибрации может использоваться в качестве датчика синхронизации при выполнении скрипта эффективности цилиндров, а также для проверки исправности форсунок.
В классических дизельных системах датчик вибрации поможет определить исправность отдельных форсунок.

Читайте также:  Вязаное платье с подкладом своими руками

Курахтанов Игорь
©Легион-Автодата

Кострома, Малый переулок, 10
+7 (963) 930-18-21
режим работы 9-21
autodiagnostic44.ru

Источник

Схема чувствительного датчика вибрации

Схема простого, но чувствительного датчика вибрации на ОУ LM358. Устройство наладки не требует и начинает работать сразу. Реагирует на шаги с расстояния в несколько метров.

Схема вибродатчика показана на рисунке ниже:

В качестве датчика используется плоский пьезоизлучатель от наручных часов либо похожий. Провод от центральной пластины пьезоэлемента подключается ко входу ОУ. Сам пьезоэлемент закрепляется на контролируемой поверхности. Для усиления чувствительности к основанию пьезоэлемента можно прикрепить небольшую пружинку с грузиком таким образом, чтобы пьезоэлемент работал на изгиб. В спокойном состоянии напряжение на неинвертирующем входе U1 на несколько милливольт ниже, чем на инвертирующем. Поэтому на выходе U1 (выв.1) присутсвует напряжение, близкое к 0 (лог.0). При появлении вибрации на выводе 3 ОУ появляется дополнительное напряжение, которое в сумме с постоянным напряжением от делителя R3-R1-R2 оказывается выше, чем на выводе 2. ОУ переключается, и на его выходе появляется напряжение, близкое к напряжению питания (лог. 1). Таким образом, на выходе датчика формируются прямоугольные импульсы в такт с вибрацией. Выходной сигнал подается на 2 контакт разъема J1.

Резистором R1 подбирается чувствительность датчика. Его номинал может колебаться от 0.33 Ом до 10 Ом. Чем меньше сопротивление — тем выше чувствительность. Кондерсатор С1 выполняет роль фильтра, исключая ложное срабатывание от одиночных импульсов. Резисторы R2 и R3 должны быть одинакового сопротивления от 1 до 3 кОм. Резисторы R4 и R5 тоже должны быть одинакового сопротивления от 47 до 200 кОм.

Датчик может питаться напряженим от 4 до 12 вольт. Резистор R6 ограничивает выходной ток в случае напряжения питания больше 5 вольт и чувствительной нагрузке на выходе. Выход датчика модет быть подключен к микроконтроллеру или транзистору, управляющему, например, реле. Также к выходу датчика может быть подключен светодиод или вольтметр.

Датчик может быть собран на печатной плате, чертеж которой представлен на рисунке:

Пьезолемент подключется через разъем слева. Провода к нему должны быть скручены между собой.

Источник

diamag-osc.com

Форум пользователей USB осциллографа DIAMAG

  • Список форумовОБОРУДОВАНИЕИнструмент для ремонта
  • Изменить размер шрифта
  • Версия для печати
  • FAQ
  • Регистрация
  • Вход

Самодельные датчики

Re: Самодельные датчики

Андрей21 » 24 май 2018, 20:47

Re: Самодельные датчики

Андрей21 » 24 май 2018, 20:53

Завернул его в цилиндр и попытался снять осциллограммы — ничего абсолютно НЕ ВЫШЛО! Уголь очень чуткая штука, не зря он в микрофонах применяется, и он принимает на себя не только усилие с мембраны, но, значительно лучше он реагирует на все металлические вибрации с движка! У меня прямо руки опустились. читай после этого форумы.

Затем я попытался изолировать ДД «Гнат» от двигателя 10 см. проставкой резинового шланга. Вот осциллограмма. Она снята без усилителя. Видна работа давления, но так же видна и тряска металла.

Re: Самодельные датчики

Allkor » 24 май 2018, 21:21

Re: Самодельные датчики

Allkor » 24 май 2018, 21:34

Re: Самодельные датчики

Allkor » 24 май 2018, 21:51

Re: Самодельные датчики

Андрей21 » 24 май 2018, 22:26

Re: Самодельные датчики

Allkor » 24 май 2018, 22:49

Re: Самодельные датчики

Юрий » 25 май 2018, 02:52

Re: Самодельные датчики

Дмитрий1970 » 22 июн 2018, 01:36

Re: Самодельные датчики

SVP » 24 июн 2018, 04:02

Источник

Датчик вибрации для осциллографа своими руками

Датчик состоит из держателя, емкостной пластины, которая гальванически соединена с сигнальным проводом, экранированного кабеля и соответствующего разъема для подключения датчика к входу регистрирующего оборудования.

Важно!
Экран кабеля датчика обязательно должен быть соединен с землей регистрирующего оборудования. Экран должен представлять собой плотную металлическую оплетку, вязанную крест на крест без просветов. Чем меньше длина участка сигнального провода кабеля без экрана – тем меньше будет электромагнитных наводок с соседних ВВ проводов.
Снятие формы вторичного напряжения датчиком основано на наличии паразитной емкостной связи, возникающей между токопроводящей жилой ВВ провода и емкостной пластиной датчика.

Из чего следует:

1. Сигнал на выходе датчика будет тем больше чем ближе емкостная пластина к токопроводящей жиле ВВ провода.

2. Влияние электромагнитных наводок с соседних ВВ проводов будет тем меньше чем меньше размер емкостной пластины и чем меньше не экранированный участок сигнального провода.

Читайте также:  Как пилить мдф своими руками

3. Величина паразитной емкостной связи всегда зависит от ВВ провода (толщины токопроводящей жилы, толщины и диэлектрической проницаемости изоляции) из чего следует, что величина сигнала на выходе датчика будет разной для одного и того же истинного значения вторичного напряжения, т.е. не возможно однозначно установить соответствие 1 В на выходе датчика – 10 КВ во вторичной цепи.

4. Емкостная связь представляет собой дифференцирующую цепочку (ФВЧ) пропускающую высокочастотные колебания (область пробоя), и не пропускающую низкочастотные колебания (область горения), т.е. форма вторичного напряжения на выходе датчика будет искажена.

Сд – емкость между токопроводящей жилой ВВ провода и емкостной пластиной датчика
Rвх – входное сопротивление регистрирующего оборудования
Свх – входная емкость не учитывается, так как она фактически в данном случае ни на что не влияет

На графике красного цвета изображен исходный сигнал (меандр 1 КГц, скважность 10%, амплитуда 1 В)
На графике синего цвета изображен сигнал, полученный на выходе дифференцирующей цепочки


Сигнал с выхода датчика без использования компенсационной емкости

Для устранения искажения формы вторичного напряжения на выходе датчика, необходимо использовать дополнительную компенсационную емкость, которая с емкостью датчик-жила образует емкостной делитель:

Без учета входного сопротивления регистрирующего оборудования, коэффициент передачи емкостного делителя определяется следующим соотношением: Kп = Сд / (Сд + Ск). Как видно из соотношения, чем больше значение емкости Ск тем меньше будет значение напряжения на выходе емкостного делителя. Для идеального емкостного делителя без учета входного сопротивления регистрирующего оборудования Ск можно взять сколь угодно малое, при этом форма сигнала на выходе делителя в точности будет соответствовать форме сигнала на его входе.

При учете входного сопротивления соотношение для определения коэффициента передачи становится гораздо объемнее, но зависимость Kп от Ск остается той же. Входное сопротивление регистрирующего оборудования на прямую не влияет на Kп, оно определяет “степень вносимого искажения”.

При увеличении входного сопротивления искажения формы вторичного напряжения значительно уменьшаются. В большинстве случаев входное сопротивления практических все осциллографов используемых для автодиагностики находится в диапазоне 1 МОм, за исключением специализированных входов предназначенных исключительно для подключения ВВ датчиков. По этому при непосредственном подключении датчика к входу осциллографа (без специализированного адаптера) Rвх также можно принять за константу, и ограничится варьированием только Ск.

Примечание!
Подключение датчика к входу осциллографа просто через резистор 10 МОм приведет к увеличению входного сопротивления и соответственно уменьшению искажения формы вторичного напряжения, но при этом примерно в десять раз уменьшиться коэффициент передачи входного тракта канала. Для увеличения входного сопротивления без уменьшения коэффициента передачи необходимо использовать промежуточный буфер (повторитель – простейший адаптер) с высоким входным сопротивлением и низким выходным сопротивлением.
Для текущих Сд (точно не известно) и Rвх (обычно 1 МОм) значение Ск подбирается исходя из компромисса:
1. Чем меньше Ск тем больше амплитуда напряжения на выходе емкостного делителя
2. Чем больше Ск тем меньше степень искажения формы вторичного напряжения

Практически значение Ск возможно увеличивать до тех пор, пока “амплитуда” напряжения на выходе емкостного делителя будет достаточно выделяться на фоне шума.

Местоположение подключения Ск: в начале кабеля (ближе к емкостной пластине) или в конце кабеля (ближе к входу регистрирующего оборудования) – практически не влияет на форму и амплитуду сигнала с выхода датчика.

На графике красного цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной на входе осциллографа, на графике синего цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной непосредственно возле емкостной пластины. Как видно форма сигналов практически одинакова, а амплитуда различается в пределах разброса номинала используемых емкостей +/- 20%.

Примеры осциллограмм вторичного напряжения снятого одним и тем же датчиком с емкостной пластиной в виде круга диаметром

10 мм при разных значениях Ск, на стенде с DIS катушки 2112-3705010 (форма вторичного напряжения несколько отличается от привычной из-за разряда на открытом воздухе).


Ск = 470 пФ. Область горения значительно проседает, но амплитуда пробоя достигает 5 Вольт.


Ск = 1.8 нФ. Область горения также значительно проседает, амплитуда пробоя уменьшилась до 2 Вольт.


Ск = 3.3 нФ. Область горения не много проседает, амплитуда пробоя уменьшилась до 1 Вольта.


Ск = 10 нФ. Область горения практически не проседает, но и амплитуда пробоя уменьшилась до 0.4 Вольт.

Как видно при Ск = 10 нФ форма вторичного напряжения практически не искажена, а шум довольно не значительный.

Для сравнения приведены осциллограммы вторичного напряжения снятые с одного и того же ВВ провода без использования адаптера и с использованием специализированного адаптера зажигания.

На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 10 нФ) непосредственно подключенного к входу осциллографа. На графике синего цвета изображен сигнал, полученный с адаптера Постоловского, к которому подключен “родной” ВВ датчик Постоловского.

Читайте также:  Изготовление банного чана своими руками

Как видно форма обеих сигналов практически совпадает, но с адаптера содержащего промежуточные усилители, сигнал имеет в 3 раза большую амплитуду.

Примечание!
Все адаптеры, использующие емкостные датчики искажают форму вторичного напряжения, но при высоком входном сопротивлении и достаточной Ск, вносимое искажение крайне не значительно.

Изготовление

В простейшем случае емкостной съемник это любой металлический предмет расположенный рядом с ВВ проводом, т.е. в роли емкостной пластины могут выступать зажим типа “крокодил”, фольга намотаня на ВВ провод, монетка и т.д.

Практически в качестве высоковольтного емкостного датчика рекомендуется использовать конструкцию, которая удовлетворяет следующим требованием:
1. Высокая степень защиты от пробоя
2. Малая подверженность электромагнитным наводкам от соседних ВВ проводов
3. Удобное конструктивное исполнение для быстрого подключения датчика к ВВ проводу

Примеры конструкции ВВ емкостных датчиков:


Жестяная пластинка 20×70 мм, выгибается, так что бы плотно прижиматься к ВВ проводу.


По сути, та же пластина только в изоляции.


ВВ датчик типа “прищепка”.


ВВ датчик аналогичный одной из конструкций Бош (поставляется по цене $7 / шт).

В качестве примера рассмотрим процесс изготовления ВВ датчика на основании выше приведенной конструкции компании Бош.

Для изготовления датчика необходимо:

1. Выше рассмотренная ручка ВВ датчика.

2. Экранированный кабель 1-3 м. Желательно использовать мягкий микрофонный кабель, так как при эксплуатации он намного удобнее жесткого коаксиального кабеля. Волновое сопротивление кабеля 50 или 75 Ом, значения не имеет, так как все исследуемые сигналы находятся в области низких частот.

3. Разъемы для подключения датчика к осциллографу или адаптеру зажигания BNC-FJ / BNCP / FC-022 Переходник гнездо F / BNC под F-ку (разъем один и тот же только у разных производителей / продавцов он по-разному называется).

BNC-M / FC-001 / RG58 / F разъем

Примечание!
При покупке F разъема и кабеля обращайте внимание на соответствие диаметра кабеля к диметру разъема для накрутки на кабель, иначе либо придется срезать часть изоляции кабеля для уменьшения его диаметра, либо наматывать ленту на кабель для увеличения его диаметра.
4. Сальник / гермоввод / кабельный ввод PG-7 с дюймовой резьбой

5. Емкостная пластина “пятачок” диаметром 9-10 мм

“Пятачок” возможно либо вырезать из жести, либо использовать специальный пробойник (лучше всего использовать пробойник на 8 мм, после развальцовки получится “пятачок” диаметром чуть больше 9 мм):

Также в качестве “пяточка” возможно, использовать подходящие по диаметру канцелярские кнопки.

6. Компенсационная емкость – не полярный (лучше керамический) конденсатор номиналом от 2.2 нФ до 10 нФ на напряжение 50 Вольт (если использовать конденсатор на 1 КВ то в случае пробоя ВВ провода он все равно сгорит). Возможно использовать как выводные конденсаторы так и планарные в корпусе 1206 или 0805.

1. Удалить изоляцию с экранированного кабеля до оплетки, на участке 12-13 мм. Часть оплетки под снятой изоляцией вывернуть наружу и равномерно расположить вдоль кабеля. С сигнального провода снять изоляцию на участке 10-11 мм и залудить его.

2. Накрутить на кабель F разъем, так что бы он плотно держался на кабеле и хорошо контактировал с частью вывернутой оплетки. При этом сигнальный провод должен выступать на достаточную длину из F разъема для надежного контакта с центральным стержнем разъема BNC-FJ.

3. Накрутить разъем BNC-FJ на F разъем. После чего проверить наличие контакта (прозвонить тестером) между сигнальным проводом и центральным стержнем разъема BNC-FJ, между оплеткой кабеля и экраном разъема BNC-FJ и отсутствие контакта между сигнальным проводом и оплеткой кабеля.

4. Если есть сальник PG-7 то предварительно надеть его на кабель открутив с него гайку.

5. Удалить изоляцию и оплетку с противоположного конца кабеля, на участке 3-5 мм. С сигнального провода снять изоляцию на участке 2-3 мм. Припаять к залуженному сигнальному проводу емкостную пластину.

При необходимости припаять компенсационную емкость между сигнальным проводом и оплеткой.

6. Обмотать участок сигнального провода и припаеную компенсационную емкость изолентой, так что бы емкостная пластина не болталась и была поджата краем изоленты. После чего емкостную пластину обильно смазывать солидолом.

Солидол “улучшает” диэлектрическую проницаемость и устраняет скачки области горения.

На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) без солидола. На графике синего цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) с использованием солидола. Без использования солидола область горения иногда “подскакивает” на 20-30%.

7. Надеть ручку ВВ датчика так, что бы емкостная пластина упиралась в дно колпачка датчика. После чего зажать кабель либо с помощью сальника PG-7 либо закрепить изолентой (при этом с датчиком нужно обращаться крайне осторожно, что бы случайно не вырвать кабель из ручки датчика).

В результате должен получится высоковольтный емкостной датчик, который возможно непосредственно подключать к одному из аналоговых (с наличием Ск) или к логическому (без Ск) входов осциллографа.

Источник

Оцените статью