Датчик влажности для вентиляции своими руками

Автоматизация вытяжки в ванной комнате

Ванная комната является помещением, постоянно подвергающимся воздействию повышенной влажности и перепадам температуры — как результат, в нем с легкостью может поселиться плесень и грибок. Основной способ борьбы — вентиляция помещения. Вентиляция может быть как естественной, так и принудительной. Если естественная вентиляция монтируется еще на стадии строительства здания, то принудительная система вентиляции может быть реализована в любой момент времени.

Сегодня речь пойдет о том, как путем нехитрых манипуляций сделать автоматизированное включение вентиляции в ванной комнате, чтобы она не превращалась в парную баню и продолжала радовать нас чистотой и свежестью.

По сути, вытяжка в ванной комнате это элементарная вентиляционная система принудительного принципа действия. Она состоит максимум из двух частей – воздуховода, который соединяется с вентиляционным стояком дома, а также непосредственно самого вентилятора.

Обычно принудительное включение вентиляции в ванной реализуют двумя самыми простыми способами:

1. Включается вместе со светом в ванной одним общим выключателем. Но вытяжка обычно нужна только во время принятия душа, когда влажность в ванной повышена. Значит, остальное время электроэнергия расходуется впустую. Чтобы проветрить ванную после душа также приходится оставлять свет включенным. Опять лишний расход электроэнергии

2. Вручную включать вентилятор вытяжки во время или после принятия душа. Нужен отдельный выключатель. Неудобно. Можно забыть выключить вентилятор, если оставить его включенным для проветривания ванной после принятия душа.

В общем, такой подход к делу не очень правильный, поскольку в этом случае вентиляция помещения производится только тогда, когда в помещении находится человек.

Можно ли автоматизировать управление вентиляцией в ванной комнате и сэкономить электроэнергию? Можно.

Автоматическая вытяжка от обыкновенной отличается только наличием электроники, контролирующей ее работу. Такие устройства либо оснащены таймером выключения (включаются они, как и обыкновенная вытяжка, с помощью клавиши выключателя), либо специальными датчиками, контролирующими влажность в ванной комнате. Как только она превышает допустимое значение, вентилятор включается, после того как влажность приходит в норму, он отключается. Такие вытяжки есть готовые, но можно доработать и уже установленную. В качестве примера мы приводим решение на основе модулей от Мастер Кит.

Для решения данной задачи были выбраны следующие модули:

MP590 – цифровой датчик влажности;
MP8037ADC — цифровой модуль защиты и управления с функцией измерения;
BOX-BM8037 – корпус для любительских конструкций с установочными размерами в формате *.PCB
PW1245 – импульсный источник питания 12В 0.5А.

Необходимое оборудование можно увидеть на фото ниже:

Цифровой датчик температуры и влажности DHT11 интерфейс 1WIRE представляет собой модуль, построенный на цифровом датчике влажности DHT11 работающий по интерфейсу 1Wire.

Модуль Цифровой модуль защиты и управления с функцией измерения представляет собой универсальную плату с одним каналом АЦП имеющую три режима работы реле ГИСТЕРЕЗИС, ТРИГГЕР, ЗАЩИТА. Модуль очень универсален и может пригодиться практически для любой автоматизации.

Корпус для любительских конструкций с установочными размерами в формате *.PCB представляет собой универсальный корпус, внутрь которого можно разместить модули MP8037R и MP8037ADC. Так же на сайте скачать файл PCB с установочными размерами LED дисплея и кнопками, для размещения собственных разработок в данном устройстве.

AC/DC Импульсный источник питания 12В 0.5А представляет собой встраиваемый источник питания напряжением 12В, с рабочим током 500 мА. Модуль оснащен всеми видами защит, что говорит о его надежности.

Думаю, эта информация может пригодиться многим, при подборе устройств под свою задачу.

Схема подключения получилась несложной. Ее можно увидеть на эскизе ниже:

Так выглядит модуль в корпусе:

Датчик влажности MP590 размещается с левой стороны, вплотную с корпусом модуля управления. Что бы все выглядело эстетично, выводы модуля можно расположить непосредственно у декоративной крышки вентилятора. Провода питания и управления необходимо припаять непосредственно на клеммы модуля. Благодаря этому, при близком расположении, невидно проводов управления вентилятора и проводов питания MP8037ADC.

Примерный вариант установки модуля с датчиком:

После установки необходимо будет произвести настройку. Для начала, согласно инструкции, переведите управление реле в режим триггер. После чего произведите настройку включения и отключения вентилятора вытяжки. Допустим, модуль показал влажность в районе 40%. Удерживая правую кнопку модуля, более пяти секунд, зайдите в меню включения, и установил значение 100. Подождав три секунды, модуль выйдет из меню. Затем удерживая левую кнопку модуля, более пяти секунд, зайдите в меню отключения и установите значение 50. Подождите, через пять секунды модуль вернется в режим работы.

Читайте также:  Как сделать картину без рамки своими руками

Как проверить работу всей системы: с помощью горячего душа поднимите влажность в ванной, контролируя показания на дисплее, при 41% должен включиться вентилятор вытяжки. Отключите душ. Через несколько минут, когда влажность понизиться, вентилятор отключится.

Демонстрация работы схемы в режиме контроля влажности:

Теперь ванной комнате нестрашен грибок, плесень и не будет перерасхода электроэнергии.

Возможно, кто-то захочет реализовать данное решение. А может быть, предложит свое?

Источник

Датчик влажности для вентиляции своими руками

Управление вентилятором вытяжки для контроля влажности воздуха в ванной

Автор: Сергей Безруков (aka Ser60)
Опубликовано 09.04.2013
Создано при помощи КотоРед.

Этот проект разрабатывался в рамках форума на сайте radiokot.ru. Выражаю признательность участникам форума aam и МитяРа за постоянное внимание к проекту, мотивацию, обмен идеями, поддержку, и консультации, как на форуме, так и в личной переписке. После изготовления устройство испытывалось на протяжении более года, в течении которого совершенствовался алгоритм его работы.

Устройство предназначено для автоматического включения и выключения вентилятора вытяжки в ванной в зависимости от относительной влажности воздуха в ней во время приема душа. В устройстве имеется 2 режима управления – ручной и автоматический. Логика работы устройства следующая.

Ручной режим: при подаче питания устройство сразу включает вентилятор вытяжки и запускает таймер отсчета времени его работы. По истечении этого времени вентилятор отключается. Повторное включение в этом режиме возможно только после кратковременного отключения питания. Установка времени задержки выключения производится через меню устройства и, как и все другие установки пользователя, сохраняется в энерго-независимой памяти микроконтроллера.

Автоматический режим: в этом режиме устройство предполагается быть все время включенным. При этом оно каждую секунду производит измерение влажности воздуха и вычисляет скорость ее изменения за определенный период времени (устанавливается через меню). Как только влажность за период измерения увеличится на заданную в меню величину (скажем, 3% за 5 секунд) при включении душа, устройство запоминает текущее значение влажности и включает вентилятор вытяжки. После этого ожидается момент уменьшения влажности на заданную в меню величину за период измерения (например, 2% за 5 секунд), что происходит после окончания приема душа и сигнализирует о выключении воды. Как только это произойдет, запускается таймер на установленное в меню время. Отключение вентилятора произойдет по обнулении таймера, или по уменьшении влажности до запомненного на момент включения вытяжки значения. Кроме того, если при включении устройства влажность превышает 90% (фиксированное значение), то произойдет включение вентилятора на установленную в меню длительность. Это удобно если прибор кратковременно выключат по ошибке после принятия душа и потом, спохватившись, включат опять (целевое значение влажности для выключения будет при этом утеряно). Наконец, если в момент отсчета таймаута снова произойдет увеличение влажности на пороговую величину (например, душ снова включили), то время выключения начнет отсчитываться сначала.

Таким образом, в автоматическом режиме устройство реагирует на скорость изменения влажности, а не на ее абсолютное значение в данный момент времени. Следовательно, включение вытяжки производится независимо от уровня влажности в ванной и в остальной части жилого помещения. Для автоматического включения вытяжки необходимо, чтобы влажность воздуха во время приема душа увеличивалась, что обычно имет место на практике. Предполагается, что душевая комната не используется для других мероприятий, приводящих к существенному увеличению влажности в ней, например сушка белья.

В процессе работы прибора производится отображение текущего значения влажности и температуры на графическом ЖКИ. Эти значения актуализируются ежесекундно. Помимо информирования пользователя, индицируемое на дисплее значение температуры также используется для термо-компенсации датчика влажности.

Читайте также:  Диван для кукол своими руками легко


Прибор установлен в душевой комнате в коробе вентилятора под потолком. Использование графического ЖКИ и больших шрифтов позволяет легко считывать показания температуры и влажности с пола. По включении вентилятора на дисплее также отображаются две информационных величины (мелким шрифтом), используемых для контроля функционирования системы. Одна из них – это значение влажности на момент включения вентилятора, показанная в красных кружках ниже. Это значение используется как целевое для выключения вытяжки в автоматическом режиме как описано выше. В ручном режиме это значение не используется и не отображается. Другое число (в зеленом кружке) – это оставшееся время работы вентилятора в минутах. Оно появляется только во время работы таймера задержки выключения. По окончании работы таймера и выключении вентилятора обе величины в кружках стираются с дисплея.

В устройстве имеются 4 кнопки для установки режима его работы. При нажатии на любую из них включается подсветка ЖКИ, которая автоматически выключится через 10 секунд, если не будет нажата никакая кнопка. В противном случае, по нажатии любой из кнопок устройство переходит в режим меню, в котором на ЖКИ отображаются установленные значения параметров режима его работы. Две левые кнопки (на схеме это SB1, SB2) поволяют выбирать следующий или предыдущий параметр меню в кольцевом режиме (индицируется стрелочками на дисплее), в то время как две правые (SB3, SB4) предназначены для увеличения или уменьшения значения соответствующего параметра (индицируется знаками “+” и “-“). При выходе из меню все параметры автоматически сохраняются в энерго-независимой памяти микроконтроллера, выключается подсветка дисплея, и устройство опять переходит в режим показа температуры и влажности. Отмечу, что алгоритм управления вентилятором продолжается в фоновом режиме во время просмотра или установок параметров меню. Ниже показаны скриншоты всех страниц меню.

Первая страница позволяет выставить режим работы (ручной или автоматический), вторая – интервал времени периодического измерения нарастания/спада влажности для автоматического включения вентилятора в секундах, третья – порог скорости увеличения влажности для включения вентилятора в %, четвертая – порог скорости спада влажности для включения таймера времени задержки отключения вентилятора в %, пятая – значение задержки выключения в минутах, и шестая – для выхода из меню. В ручном режиме работы установки на страницах 2 – 4 меню не используются.


Сердцем уствойства является микроконтроллер C8051F996 фирмы Silicon Laboratories. Одна из причин его применения — это простота сопряжения с емкостным датчиком влажности HIH-1000 (C2), не требующее никаких дополнительных деталей. Измерение емкости датчика производится встроенным в микроконтроллер и патентованным фирмой-изготовителем Емкостно-Цифровым Преобразователем (ЕЦП). Он спроектирован для работы с сенсорными датчиками прикосновения, но, как показали эксперименты, он достаточно линеен и также хорошо подходит для работы с емкостными датчиками влажности. В режиме усиления 1х этот ЕЦП позволяет измерить емкость примерно до 500пФ с разрешением в 12 бит (т.е. 0,12 пФ), в то время как интервал изменения емкости датчика находится в пределах от 300 до 370 пФ. Точность преобразования можно повысить до 16 бит установкой параметров модуля ЕЦП. Процесс измерения емкости при выбранном режиме работы ЕЦП занимает около 180 мкс. В результате экспериментов с использованием эталонных конденсаторов и учета передаточной характеристики используемого сенсора, взятой из его ДШ, была выработана следующая формула для определения влажности:

где A – код ЕЦП микроконтроллера, T – температура окружающего воздуха в °C, а А0 – код ЕЦП при влажности H0 и температуре Т0. Отмечу, что все вычисления по этой формуле производятся только с целочисленными данными и результатом является целое число, соответствующее относительной влажности воздуха в %.

Для измерения температуры применен аналоговый датчик TC1047A, подключенный к встроенному в микроконтроллер 10-битному АЦП. Последний работает с внутренним источником опорного напряжения Vоп = 1,65 В. В результате получаем следующую формулу для определения температуры:

Читайте также:  Домашние самоделки своими руками для дома

Т(°C) = ((K·165) >> 10) – 50,

где K – код АЦП. Эта формула также предполагает только целочисленные операции. Замечу, что в обоих формулах умножение производится только на 1-байтные константы, что позволяет особенно просто реализовать это на имеющемся в микроконтроллере 8×8-бит аппаратном перемножителе.

Для отображения информации применен графический COG (Chip On Glass) дисплей с разрешением 128х32 фирмы Newhaven. Связь микроконтроллера с дисплеем производится по интерфейсу SPI. Конденсаторы C7 – C14 являются частью встроенного в дисплей преобразователя напряжения. Транзистор Q3, управляемый сигналом ШИМ из микроконтроллера, предназначен для включения и контроля яркости подсветки ЖКИ. Электроника дисплея потребляет около 80 мкА при выключенной подсветке и около 12 мА при включенной.

Управление вентилятором производится с выхода 12 микроконтроллера с помощью оптрона MOC3043 и симистора Q2 в стандартном включении. При использовании надлежащего типа Q2 возможна работа прибора в сети 220В без изменения номиналов других деталей схемы. Питается устройство от импульсного преобразователя напряжения на 5В от зарядки для мобильного телефона. Дальнейшее понижение напряжения до 3В, требуемых микроконтроллеру и дисплею, и его стабилизация производится микросхемой DA2. В активном режиме микроконтроллер работает на частоте 20 мгц от встроенного генератора. Разъем XS1 предназначен для его программирования через интерфейс C2. Печатная плата изготовлена из односторонне фольгированного материала. Силовая часть схемы (компоненты показанные ниже серой горизонтальной черты на ней) смонтированы около мотора вентилятора на отдельной перфорированной плате (на снимках не показана).


Если индикация температуры/влажности не требуется, дисплей с его обвязкой можно исключить из схемы. Никаких изменений программы это не повлечет. Для увеличения точности показаний влажности и компенсации технологического разброса параметров датчика C2, прибор желательно прокалибровать. Для этого к прибору включают под управлением внутрисхемного отладчика и ставят точку останова на строке 379 кода (инструкция “jnb Status.1, average_HUMI”). По достижении отладчиком точки останова, 12-битное число в регистрах R3:R2 МК (R2 – младший байт, R3 — старший) записывают в 5-й сроке кода как CS_NOM. При этом показание температуры на дисплее записывают в сроке 4 кода как TEMP_NOM (до записи значение температуры умножают на 4 и прибавляют к результату 200). Наконец, в 3-й строке кода записывают значение влажности, измеренное образцовым влагометром. Как показал опыт изготовления подобных устройств, без калибровки отличие показанной прибором влажности от истинной не превышало ± 6%.

Программа микроконтроллера написана на языке ассемблера и отлажена в среде Silicon Laboratories IDE, интегрированной с компилятором A51 фирмы Keil. Сама программа занимает около 1,95КБ памяти микроконтроллера из 8КБ его памяти. Помимо этого, примерно 2,1КБ занимают шрифты для ЖКИ. Исходный текст программы и файл платы для Eagle прилагаются. Внешний вид устройства, вмонтированного в короб воздухозаборника вентилятора, показан на левом фото ниже. Воздух в короб поступает через жалюзи в левой и правой стенках.

Эффективность вытяжки безусловно определяется производительностью вентилятора. В душевых нашего дома установлены стандартные вентиляторы турбинного типа под потолком (правое фото выше). В их короб также встроена лампа для освещения. Диаметр крыльчатки вентилятора 12 см, питание 120В/1.4А, производительность 5 м 3 /мин. Воздух от вентилятора подается в трубу диаметром также 12 см, выходящую наружу. Конечно, до кнопок с пола дотянуться сложно, но установку параметров устройства под конкретные условия помещения предполагается производить только на начальном этапе настройки. Душевая комната, где установлен контроллер, имеет плошадь около 4.5 м 2 . В автоматическом режиме включение вентилятора в ней происходит спустя примерно 20 секунд после включения (теплого) душа. При пользовании только краном в раковине влажность не увеличивается так быстро как при приеме душа, поэтому при выбранном пороге (см. установки меню выше) вентилятор автоматически не включается. Описанный алгоритм работы испытывался на протяжении четырех времен года при минимальной влажности в жилом помешении 30% зимой и максимальной около 80% летом. Отказов в работе системы не наблюдалось.

Источник

Оцените статью