- 💥 Как подключить датчик звука к Ардуино
- Датчик звука (микрофон) для Arduino
- Как подключить датчик звука к Arduino
- Простой аналоговый датчик звука для Ардуино своими руками
- Датчик звука KY-037. Датчики. Ардуино
- Технические характеристики
- Датчик звука KY-037
- Для того, чтобы выполнить этот урок нам понадобиться.
- Программа
- Полный текст программы
- Заключение
- Подключаем датчик звука к Arduino
- Характеристики
- Простые схемы использования
- Некоторая информация о голосовом распознавании
- Структура слова
- Некоторые рекомендации
- Видео по теме
💥 Как подключить датчик звука к Ардуино
Рассмотрим аналоговый датчик звука для Ардуино. Расскажем, как подключить датчик звука к микроконтроллеру Arduino, разберем программу для автоматического включения света от хлопка в ладоши и получения показаний датчика звука на последовательном мониторе порта Arduino IDE. Рассмотрим использование в программе тип данных boolean, который чато применяется в языке C++.
Датчик звука (микрофон) для Arduino
Состоит датчик из платы (смотри картинку ниже) на котором смонтированы порты подключения к Arduino Nano, усилитель звука, подстроечный резистор и электронный микрофон, чувствительный к звуку, приходящему во всех направлениях. Регулятором чувствительности (переменным резистором) можно настраивать чувствительность микрофона и выбирать от какого уровня шума будет срабатывать датчик.
Датчик звука Arduino для слежения за уровнем шума
Данная плата расширения для Arduino позволяет перевести звуковые колебания в цифровой сигнал. При колебании мембраны в микрофоне от звуковых волн, изменяется емкость его конденсатора, вследствие чего проявляется изменение напряжения на выходах датчика звука, соответствующее звуковому сигналу. Сенсор слева на картинке может отправлять цифровой и аналоговый сигнал.
Как подключить датчик звука к Arduino
Для этого занятия нам потребуется:
- плата Arduino Uno / Arduino Nano / Arduino Mega;
- макетная плата;
- датчик звука KY-037 (микрофон);
- 1 светодиод и 1 резистор 220 Ом;
- провода «папа-папа» и «папа-мама».
Датчик звука для Ардуино имеет на плате подписанные выходы (обозначение у каждого производителя может отличаться), но проблем с подключением датчика к Ардуино возникнуть не должно. Питание датчика производится от 5V, выход (OUT, S или AO) подключается к любому аналоговому входу на Arduino Uno, а выход DO к Pin 2, если требуется получать цифровой сигнал на Ардуино с датчика микрофона.
Фото. Как подключить датчик звука KY-037 к Arduino UNO
Чтобы сделать своими руками светильник, который будет включаться по хлопку в ладоши необходимо собрать электрическую схему из следующих элементов: светодиод с резистором, плата Arduino и датчик звука KY-037 для включения света своими руками. Светодиод можно подключить к любому выходу, в скетче мы использовали Pin 11. После сборки схемы, подключите Ардуино к компьютеру и загрузите скетч.
Источник
Простой аналоговый датчик звука для Ардуино своими руками
Теперь давайте рассмотрим схему датчика.
Кроме операционного усилителя нам понадобится еще несколько легкодоступных компонентов.
Самый обычный микрофон. Если полярность микрофона не обозначена, то достаточно взглянуть на его контакты. Минусовой всегда уходит на корпус, а в схеме, соответственно, соединяется с «землей».
В моем случае в качестве «золотой середины» применен резистор на 620 кОм.
Но в идеале нужно использовать переменный резистор соответствующего номинала. При чем, как показали опыты больший номинал лишь повышает чувствительность устройства, но при этом появляется больше «шумов».
Сборка завершена. Схему установил в корпусе, который изготовил из небольшого обрезка пластиковой трубки.
Переходим к тестированию устройства. Я подключу его к плате Arduino UNO. Переходим в среду разработки Ардуино и открываем пример AnalogReadSerial в разделе Basics.
Перед загрузкой в плату изменяем задержку на 50 миллисекунд и вгружаем. После этого делаем пробный хлопок и следим за показаниями. В момент хлопка они подскакивают, постарайтесь примерно запомнить это значение и вернитесь к скетчу.
В скетч добавляем пару строк.
Вместо «Х» вставляете то самое значение, загружаете и снова хлопаете. Так продолжайте до тех пор, пока не подберете оптимальное значение срабатывания. При завышенном значении условие будет выполняться лишь при хлопке на очень близком расстоянии. При заниженном значении условие будет выполняться при малейшем шуме или звуке шагов.
Источник
Датчик звука KY-037. Датчики. Ардуино
Привет! Вы наверняка видели светильники, которые включаются от хлопков в ладоши. И если вы хотели такой же, этот обзор для вас. Потому что, сегодня рассмотрим датчик звука KY-037 для Ардуино, который поможет нам сделать такой же переключатель.
В прошлый раз мы рассматривали другой датчик для Ардуино. Датчик препятствий KY-033, так что, посмотрите этот обзор, если пропустили или уже забыли.
Датчик звука KY-037 — это небольшая плата с микрофоном, усилителем и переменным резистором, чтобы настроить чувствительность вручную.
Микрофон преобразует колебания звука в электрический сигнал. Его необходимо усилить с помощью компаратора, чтобы считать на Ардуино.
Как видно, датчик имеет 4 контакта. А значит два вида сигналов — аналоговый и цифровой. Разумеется, мы сможем их использовать в программе, так как при срабатывании датчика на выходе появится логическая 1 или значение близкое к 1024 на аналоговом выходе.
Технические характеристики
- Напряжение питания: 3,3 — 5 В
- Цифровой и аналоговый вывод
- Максимальное расстояние обнаружения – 5 м
- Размер модуля: 32×17×15 мм
- Общий вес: 12.5 г
Датчик звука KY-037
- A0 – Аналоговый вывод
- G – Земля
- + – 3,3 — 5 В
- D0 — Цифровой вывод
Прежде всего, обратите внимание на маркировку контактов на плате датчика. Порядок контактов может быть разным.
Как видно на графиках ниже, чувствительность датчика может быть разной. В результате на цифровом порту может быть сложно получить четкое срабатывание датчика. Поэтому, мы запрограммируем обработку сигнала с аналогового выхода.
Для того, чтобы выполнить этот урок нам понадобиться.
- Ардуино UNO
- Макетная плата
- Перемычки
- Датчик KY-037
- Кабель USB
Программа
Как видно, программа достаточно проста. Мы считаем данные с цифрового и аналогового порта. Выведем их в монитор последовательного порта. Так же используем плоттер для построения графиков. И настроим включение светодиода на хлопок в ладоши.
Монитор последовательного порта
На мониторе последовательного порта виден уровень повседневного шума. Это нормальное состояние, в зависимости от которого мы настроим обработку аналогового сигнала. Этот уровень настраивается вручную с помощью подстроечного резистора.
Монитор плоттера построения графиков
В результате, на мониторе плоттера видно небольшие отклонения графика. Это и есть хлопки в ладоши рядом с микрофоном.
Датчик звука срабатывает на хлопок в ладоши
Полный текст программы
Заключение
Мы рассмотрели еще один датчик для Ардуино. Датчик звука KY-037. С его помощью можно делать различные переключатели или системы оповещения реагирующие на звук. Также мы попробовали использовать встроенный в IDE плоттер для построения графиков. Отдельный урок о нем сделаем в будущем.
Источник
Подключаем датчик звука к Arduino
Физическое окружение человека все время «умнеет», подстраиваясь под запросы и требования хозяина. Речь, конечно же идет об автоматизированных и роботизированных вещах, облегчающих труд и выполняющих все те функции, которые существу разумному делать слишком долго, тяжело или нудно. Большая часть техники такого рода работает с управлением на основе микроконтроллеров, которые в свою очередь, можно назвать миниатюрными компьютерами, ориентированными на контроль другого, более простого оборудования.
Одним из наиболее распространенных на текущий момент, за счет удобства применения и ширины возможностей, можно назвать Arduino, недостатков у которого попросту не существует в качестве системы управления и DIY-проектов, и профессиональной техникой, используемой на крупных и серьезных производствах.
Единственный вопрос становящийся перед проектировщиками «умных» устройств, использующих микроконтроллеры – легкое ими управление человеком, то есть обеспечение простого интерфейса контроля. Одно из наиболее логичных из приходящих на ум решений – человеческий голос, отдавая команды, которыми пользователь абсолютно вербальным образом сможет управлять работой логического выключателя, конечно в рамках заложенной в того программы. Только сразу встает проблема получения голосовых последовательностей устройством. Что ж, есть и решение – платы захвата звука, среди которых в разрезе технологии Arduino сразу вспоминаются KY-037 и KY-038, унифицированные и отличающиеся только размером микрофона.
Конечно, не стоит ждать от них записи MP3 или его полнофункциональной обработки. Но в нише восприятия голосовых команд названые платы-дополнения имеют полное право на существование.
Характеристики
Характеристики у обоих устройств KY-037 и KY-038 достаточно скромные, и отличающихся, как было сказано ранее, между собой только размером микрофона.
- питание — 3,5–5В;
- цифровой выход — есть, однобитный, работающий в режиме индикации наличия звука или тишины;
- аналоговый — присутствует, с градацией получаемого сигнала в 1024 уровня;
- вес — в среднем 12..13 грамм;
- предел чувствительности — до 5 метров;
Принципиальная схема и выводы устройства:
Сразу хочется заметить, что названые детекторы, регистрируют только достаточно громкие звуки и не очень чувствительны к их переходным состояниям, к примеру, используемым в словах или фразах. То есть, сделать выключатель или активатор реагирующий на хлопок и свист гораздо проще, чем запрограммировать систему распознавания голосовых команд с применением KY-037 или KY-038. Некоторые идеи по осуществлению требуемой функциональности будут представлены далее.
Обратите внимание на «регулятор чувствительности» отмеченный на фото платы. С его помощью можно варьировать значение характеристики, улучшая «слух» детектора, в установленных пределах.
Простые схемы использования
Чтобы продемонстрировать работу датчиков звука с Arduino можно собрать простую схему:
Резистор используемый в ней, берется номиналом в 220 Ом. Основная функциональность выражается в зажигании светодиода при обнаружении громких звуков и гашения его в случае тишины. Скетч:
// Диапазон минимальных и максимальных показателей, устанавливается
// для определения значения аналогового сигнала в тишине у платы
// захвата звука, все что будет отличаться служит указателем
// наличия изменений звукового фона. Определяется опытным путем.
const int SilenceMin = 625;
const int SilenceMax = 637;
// Задание портов IN_DIG цифровой вход с KY-037/038,
// IN_ANALOG аналоговый с нее же и OUT_LED пин управляющий светодиодом
const int OUT_LED = 9;
const int IN_ANALOG = A3;
const int IN_DIG = 1;
void setup() <
pinMode(OUT_LED, OUTPUT);
pinMode(IN_ANALOG, INPUT);
pinMode(IN_DIG, INPUT);
>
void loop() <
// Примечание от составителя: если использовать нижеприведенную
// конструкцию, светодиод будет включаться при любом изменении
// звукового фона. Для определения наличия именно команды
// стоит изменить строку на if (AnalogRead(IN_ANALOG) > SilenceMax) <
if (AnalogRead(IN_ANALOG) > SilenceMax || AnalogRead(IN_ANALOG)
Изменяя время задержки, между включением и гашением светодиода, а также пробным путем выведя значения «тишины» SilenceMax и SilenceMin, можно добиться работы приведенной схемы в роли детектора движения по звуку. Конечно, качество определения у него будет низкое, но вполне позволяющее применять конструкцию в цепях управления освещением темных мест. Достаточно добавить фоторезистор для определения текущего уровня видимости, в роли которого можно использовать специальную плату Arduino или обычный радиоэлектронный компонент, подключаемый через делитель.
Как видно по схеме, в ней используются два резистора – R1 на 10 кОм и R2 220 Ом. Светодиод LED в финальном варианте можно заменить на релейную группу, для подачи питания на «взрослые» лампы 220В. Скетч, управляющий всем перечисленным хозяйством:
#DEFINE D1 1
#DEFINE D3 3
#DEFINE A2 2
#DEFINE A4 4
// Характеристики «тишины»
const int SilenceMin = 625;
const int SilenceMax = 637;
// Задание портов: IN_DIG цифровой вход с KY-037/038, IN_ANALOG аналоговый с нее же
// OUT_LED пин управляющий светодиодом, IN_FLASH сигнал от фоторезистора.
const int IN_DIG = D1;
const int OUT_LED = D3;
const int IN_LIGHT = A2;
const int IN_ANALOG = A4;
void setup() <
pinMode(OUT_LED, OUTPUT);
pinMode(IN_ANALOG, INPUT);
pinMode(IN_DIG, INPUT);
pinMode(IN_LIGHT, INPUT);
>
void loop() <
if ( DigitalRead(IN_DIG) == HIGH && DigitalRead(IN_LIGHT) == LOW ) <
// При подключении фоторезистора, как на схеме в темноте он будет давать
// минимальный сигнал, так-как его сопротивление во мраке максимально.
// На свету будет поступать высокий уровень на вход Ардуино и этот
// блок кода не сработает
DigitalWrite(OUT_LED, HIGH);
delay(10000); // долгая задержка
DigitalWrite(OUT_LED, LOW);
>
Задержка подбирается экспериментально, в зависимости от конкретной чувствительности KY-037 или KY-038, а также их настроек, производимых регулятором на плате устройства.
Некоторая информация о голосовом распознавании
Здесь будут представлены общие идеи, позволяющие впоследствии создать систему голосового командного управления, естественно с ограничениями, накладываемыми мощностью Arduino.
Первое, что нужно учесть при проектировании – обращение к самому конкретному устройству, чтобы его функционирование не начиналось или прерывалось от случайно сказанного слова. То есть, перед отдачей команды нужно будет произносить не похожий на нее идентификатор конкретного контролера. К примеру: «К7 Включение». Описанное, кстати хорошо тем, что нет похожести согласно произносимых звуков.
Структура слова
Основное, на что нужно обратить внимание при проектировании систем распознавания звука – сама фонетика языка. В русском, есть гласные и согласные буквы. Последние еще и бывают шипящего, звонкого и глухого произношения. Устройства улавливающие звуковые волны, наиболее слышат, как раз, первые, вторые и третьи, а вот к последним «глуховаты». Поэтому, собственно и программировать конечный аппарат требуется именно на их определение, а не слова в целом. Опять же. Каждый человек обладает определенной дикцией и высотой тона голоса. Посудите сами, послушав, как одно и то же слово произносится мужчиной или женщиной. К тому же некоторые люди быстро проговаривают текст, другие медленнее. Все названые факторы требуется учесть при написании скетча обработки.
Еще одно ограничение, накладываемое платам KY-037 и KY-038 – падение уровня улавливаемого сигнала в зависимости от расстояния до его источника. То есть, нужно предусмотреть сравнение именно разниц поступающих пиков, а не конкретных значений.
Некоторые рекомендации
Определение лучше производить, выявив высоту тонов и длительность произношения в каждом конкретном случае, под индивидуальные характеристики голоса человека. Впоследствии, ввести в скетч усреднение полученных данных на аналоговом входе, алгоритмы которых легко можно найти через поисковые системы. Последнее действие нужно для случаев, когда оператор охрип, осип, устал или находится под действием еще каких-либо факторов, изменяющих вокальные характеристики.
Разбор последовательности звуков проводится не точным соответствием, а логическими условиями, по причине пропуска некоторых в разговорной речи. То есть, предположим, существует массив, содержащий последовательность значений гласных и шипящих, аналогичных используемым в самой команде. Тогда разбор голоса будет выглядеть следующим образом:
Просьба обратить внимание, что приведенный кусок кода служит только целям ознакомления и понимания принципов разбора. Разницу пиков, о которых говорилось ранее, алгоритм не проверяет, сравнивая только конкретные значения.
#DEFINE D1 1
#DEFINE D3 3
#DEFINE A2 2
#DEFINE A4 4
// Характеристики «тишины»
const int SilenceMin = 625;
const int SilenceMax = 637;
const int IN_DIG = D1;
const int IN_ANALOG = A4;
// команда «включение» последний байт для блокирования ошибки
const int command_on[]=<857, 704, 740, 720, 740, 0>;
int tPOS=0; // текущее положение в разбираемом слове
void loop() <
int flag=0, GFONEM=ReadAnalog(IN_ANALOG), FOUND_COMMAND_ON = 0;
if (GFONEM==command_on[0]) < // совпадение первого звука последовательности, разбираем
flag=1;
while (flag>0) <
Delay(50); // пауза между произносимыми звуками, подбирается экспериментально
GFONEM=ReadAnalog(IN_ANALOG);
if (GFONEM>MinFONEM) < // ограничитель уровня именно гласных и шипящих,
// они будут выше, чем согласные
if (GFONEM==command_on[tPOS] || GFONEM==command_on[tPOS+1]) <
// все ок, идем по команде «включение», проверяя
// текущий звук или возможно следующий
FOUND_COMMAND_ON = 1;
> else <
FOUND_COMMAND_ON = 0;
flag = 1;
>
if ( tPOS == 5 ) < flag = 1 ); // найден последний звук, можно выходить
tPOS++;
>
>
>
if (FOUND_COMMAND_ON == 1) <
// выполнение действий при команде «включение»
// .
>
>
Для качественного распознавания речи используют различные более сложные алгоритмы. Например нейросетевой с предварительным разложением в ряд Фурье:
- Разделить фразу на отдельные слова, отслеживая промежутки тишины;
- Разложить запись каждого отдельного слово в ряд Фурье — таким образом определятся коэффициенты, соответствующие отдельным частотным составляющим;
- Пропустить вычисленные в п.2 коэффициенты через нейросеть, которая на выходе даст значение слов.
Чтобы такая нейросеть могла «распознавать» слова, подаваемые на её вход, предварительно она должна быть обучена!
Для выполнения такого обучения на вход сети подают эталонное слово, а затем с помощью специальных алгоритмов (например, обратного распространения ошибки) подбирают значения структурных коэффициентов нейронной сети, при которых нейросеть выдаёт правильное значение на выход.
Видео по теме
Источник