- Датчик вибрации своими руками
- Датчик вибрации своими руками
- Схема чувствительного датчика вибрации
- ДАТЧИК ВИБРАЦИИ
- Датчик вибрации своими руками
- Датчик вибрации
- Схема и работа
- Сборка и тестирование
- Загрузить PDF-файлы с печатной платой и компоновкой компонентов: нажмите здесь
- 2 Схемы
- Модуль датчика удара или вибрации в сигнализацию авто
- Устройство датчика от сигнализации
- Настройка датчика для микроконтроллеров
- Самодельный датчик удара или вибрации
Датчик вибрации своими руками
Датчик вибрации своими руками
Датчик вибрации своими руками — дополненный простой системой крепления и несколькими спаянными «на весу» компонентами, пьезоэлемент может детектировать механические удары. Собственно датчик состоит из керамического пьезоэлемента и тонкого латунного диска. Такого рода сборка раньше использовалась во многих телефонных аппаратах в качестве источника вызывного сигнала или в наручных часах с будильником.
В зависимости от способа монтажа, датчик может воспринимать удары в направлении одной оси (Рисунок 16) или трех (Рисунок 16). Для одно осевого измерения припаяйте один край датчика к завернутому в монтажное основание винту. На противоположный край припаяйте груз, чтобы увеличить чувствительность датчика. Пара небольших крючков, прикрепленных к основанию, ограничивает движение датчика, не допуская поломки пьезоэлемента.
Если вы хотите, чтобы система была чувствительна к ударам в трех измерениях, один край датчика припаяйте к винту точно так же, как в первом случае. На другой край припаяйте винт с плоской потайной головкой, направленный в сторону, противоположную монтажному основанию. Используйте пару контр-гаек, чтобы увеличить полярный момент инерции конструкции. Положение контр-гаек определяет чувствительность пьезоэлемента. В обоих случаях, для того чтобы не нарушить соединение пьезоэлемента с латунным диском, время пайки должно быть минимально возможным.
На Рисунке 2 изображена простая схема сигнализации. При хорошем щелчке по пьезозлементу на 10-мегаомном резисторе R1 возникнет напряжение в несколько вольт. После этого микросхема сдвоенного таймера 1с1 в течение одной минуты будет включать питание звукового излучателя с периодичностью 1 с. Излучатель звука имеет собственную встроенную схему управления, генерирующую пронзительный сигнал со звуковым давлением 90 дБ.
Источник
Схема чувствительного датчика вибрации
Схема простого, но чувствительного датчика вибрации на ОУ LM358. Устройство наладки не требует и начинает работать сразу. Реагирует на шаги с расстояния в несколько метров.
Схема вибродатчика показана на рисунке ниже:
В качестве датчика используется плоский пьезоизлучатель от наручных часов либо похожий. Провод от центральной пластины пьезоэлемента подключается ко входу ОУ. Сам пьезоэлемент закрепляется на контролируемой поверхности. Для усиления чувствительности к основанию пьезоэлемента можно прикрепить небольшую пружинку с грузиком таким образом, чтобы пьезоэлемент работал на изгиб. В спокойном состоянии напряжение на неинвертирующем входе U1 на несколько милливольт ниже, чем на инвертирующем. Поэтому на выходе U1 (выв.1) присутсвует напряжение, близкое к 0 (лог.0). При появлении вибрации на выводе 3 ОУ появляется дополнительное напряжение, которое в сумме с постоянным напряжением от делителя R3-R1-R2 оказывается выше, чем на выводе 2. ОУ переключается, и на его выходе появляется напряжение, близкое к напряжению питания (лог. 1). Таким образом, на выходе датчика формируются прямоугольные импульсы в такт с вибрацией. Выходной сигнал подается на 2 контакт разъема J1.
Резистором R1 подбирается чувствительность датчика. Его номинал может колебаться от 0.33 Ом до 10 Ом. Чем меньше сопротивление — тем выше чувствительность. Кондерсатор С1 выполняет роль фильтра, исключая ложное срабатывание от одиночных импульсов. Резисторы R2 и R3 должны быть одинакового сопротивления от 1 до 3 кОм. Резисторы R4 и R5 тоже должны быть одинакового сопротивления от 47 до 200 кОм.
Датчик может питаться напряженим от 4 до 12 вольт. Резистор R6 ограничивает выходной ток в случае напряжения питания больше 5 вольт и чувствительной нагрузке на выходе. Выход датчика модет быть подключен к микроконтроллеру или транзистору, управляющему, например, реле. Также к выходу датчика может быть подключен светодиод или вольтметр.
Датчик может быть собран на печатной плате, чертеж которой представлен на рисунке:
Пьезолемент подключется через разъем слева. Провода к нему должны быть скручены между собой.
Источник
ДАТЧИК ВИБРАЦИИ
Сегодня мы с вами поговорим о такой интересной штуке, как датчик вибрации, область ее применения зависит от вашей фантазии. Я, например, использовал его как датчик, для сигнализации приклеив его к рамке, на которой установлена дверь. Теперь поговорим о самом устройстве. Схема датчика была разработана лично мной, и ее нет нигде в интернете — только на нашем сайте. Характеристики ее следующие: устройство начинает работать сразу после правильной сборки – то есть, не нуждается ни в каких настройках, которые мы с вами так не любим, чувствительность просто потрясающая — с десяти метров от него, исполняя какой нибудь танец, микроамперметр или светодиод начнет подтанцовывать вместе с вами. Вот сама схема датчика вибрации:
Микросхему LM358 использовал, так как она, на мой взгляд, является самым распространенным операционным усилителем, есть она в любом радиомагазине, и стоит копейки. В крайнем случае, ее можно выдрать из краба – универсального зарядного для аккумуляторов мобильных телефонов или из автомобильной сигнализации – там они часто встречаются в приемной части, еще можно заменить на LM324 – у нее плюс питания на четвертую ногу, а минус на одиннадцатую при этом конечно уже не соединяем восьмую и четвертую. Пьезодинамик покупаем или достаем из убитых калькуляторов, наручных часов, велосипедных пищалок и прочих пиликающих игрушек. Микроамперметр бывает в советских магнитофонах, усилителях или авометрах (древних тестерах). Пьезик можно заменить на светодиод или небольшой динамик с малым током потребления (около 20-ти миллиампер, тогда убираем R6). Резисторы R3, R5 – могут быть в пределах 1к до 3к3, главное чтоб они были одинакового номинала. Резистор R4 — влияет на чувствительность, меньше сопротивление — выше чувствительность (минимальное что я ставил 0, 33 ом – это подкрадываясь почувствует на расстоянии 5-6 метров). R1, R2 в пределах 47к … 220к тоже оба с одинаковыми номиналами. R6 как ограничение тока, подходит для микроамперметра и светодиода. Конденсаторы C1 и C2 от 1мк до 47мк. Питание датчика вибрации
возможно даже от литиевого аккумулятора 3,7 вольта, тогда для светодиода можно будет убрать R6. В принципе всё, если собрали все необходимые детали — можно начинать сборку. Собираем сначала схему датчика на ОУ и не трогаем пьезодинамик. Вариант изготовления платы смотрим здесь:
Теперь разбираемся с пьезо динамиком. У него есть середина из пьезоэлемента с напылением сверху для пайки, и пластина (обычно бронзовая или никелированное железо) на которой с одной стороны та самая середина из пьезоэлемента. Припаиваем к середине пьезоэлемента провод, другой его конец провода припаиваем к выводу 3 микросхемы, потом припаиваем пластину прямо на плату, а на противоположной от платы стороне к пьезодинамику прикрепляем пружину (для большей чувствительности) смотрим рисунок. Итак, датчик вибрации собран, можно проверять. Подключаем питание и ждем, пока пружина не успокоится. Когда на выходе будет «0” (не светится светодиод или микроамперметр показывает «0”), щелкаем пальцами или хлопаем, датчик должен отреагировать. Если все работает – отлично, если нет, проверьте, нет ли замыканий, правильно ли все соединили. Микросхема вообще должна быть рабочей, даже если вы ее выпаяли из какого нибудь устройства (на ней нет никакой нагрузки). Если интересно как этот датчик работает, читаем тут. У операционного усилителя есть два входа ( один из них называют «+” другой «-”) и один выход. Если подаем на вход «+” напряжение больше чем на вход «-«, на выходе имеем «+” если же наоборот на выходе будет «-«. По схеме напряжение входе «+” меньше чем на входе «–» на пару милливольт и поэтому на выходе имеем «-«. Теперь пьезо динамик — такая крутая вещь, что преобразует звук или вибрацию в напряжение (у меня от пьезодинамика даже светодиод светился, просто ударяя по нему карандашом), и он при вибрации увеличивает напряжение на входе «+”и, следовательно, имеем на выходе тоже «+”. Заранее благодарю за повторение моих конструкции. Автор статьи — Леша «левша», устройство испытал: АКА.
Форум по обсуждению материала ДАТЧИК ВИБРАЦИИ
Источник
Датчик вибрации своими руками
Датчик вибрации, как его сделать своими руками.
Здесь представлена чувствительная сигнализация с использованием датчика вибрации для применения в качестве простой системы наблюдения для защиты дверей и окон. Он также может быть использован в качестве защиты багажа или шкафчика. Схема издает звуковой сигнал и зажигает белый светодиод, когда обнаруживает даже небольшую вибрацию. Он компактен, работает от батареи и может быть заключен в небольшую коробку.
В схеме используется миниатюрный датчик вибрации SW18020 P от Gaoxin. Его можно использовать различными способами для определения механических вибраций, чтобы активировать сигнализацию и другие системы наблюдения в различных проектах по обнаружению вибрации.
Датчик вибрации
Датчик вибрации имеет два электрических контакта, которые не касаются друг друга в состоянии холостого хода. При любом движении или вибрации контакты датчика замыкаются и соприкасаются друг с другом. Когда движение или вибрация прекращаются, контакты датчика возвращаются в исходное положение, далеко друг от друга. Замкнутые контакты во время вибрации запускают цепь, подключенную к нему. Авторский прототип показан на рис. 1.
Датчик вибрации имеет небольшой пружинный механизм, который заставляет контакты касаться друг друга, когда вибрация возникает выше определенного порогового уровня. Два вывода, выходящие из датчика, изолированы с сопротивлением более 10 мОм. Во время вибрации пружина внутри датчика вибрирует и кратковременно замыкается между двумя клеммами.
Клеммы датчика вибрации не имеют полярности, но один штифт толстый. Он подключен к Vcc через резистор, а тонкий контакт подключен к цепи, которая должна быть запущена.
Максимальное рабочее напряжение датчика составляет 12 В постоянного тока, но оно работает даже при трех вольтах. При использовании его в цепи он потребляет ток менее 5 мА и обеспечивает сопротивление контакта около 10 мОм в открытом состоянии и менее 5 Ом в состоянии контакта. Это очень надежно, и его время отклика составляет менее 2 мс. Работает более 500 000 раз без поломок. Датчик вибрации показан на рис. 2.
Рис. 2: Датчик вибрации
Схема и работа
Принципиальная схема датчика вибрации показана на рис. 3. Он построен вокруг таймера NE7555 (IC1), NPN-транзистора BC547 (T1), пьезо-зуммера (PZ1) и нескольких других компонентов.
Рис. 3: принципиальная схема датчика вибрации
Схема проста. Таймер NE7555 настроен в моностабильном режиме для включения зуммера и белого светодиода в течение примерно двух минут, когда датчик обнаруживает вибрацию. Датчик вибрации напрямую подключен между контактом 2 запуска и контактом 1 заземления IC1. NE7555 является CMOS-версией таймера NE555 и работает от трех вольт.
Датчик смещен резистором R1, который также поддерживает триггерный вывод 2 IC1 в высоком состоянии в режиме ожидания. Когда датчик ощущает небольшую вибрацию, его контакты замыкаются и переводят вывод 2 таймера на уровень земли. Это запускает таймер, и его выходной сигнал повышается примерно на две минуты в зависимости от значений компонентов синхронизации R2 и C1. Когда выходной сигнал таймера становится высоким, транзистор T1 проводит питание на белый светодиод 0,5 Вт и зуммер.
Схема питается от 4,5-вольтовой аккумуляторной батареи, обычно используемой в беспроводных телефонах. Его можно заряжать с помощью зарядного устройства для мобильного телефона, если имеется подходящая розетка. LED2 указывает на зарядку аккумулятора.
Сборка и тестирование
Схема односторонней печатной платы для датчика вибрации показана на рис. 3, а компоновка его компонентов на рис. 4. Соберите схему на печатной плате и поместите в подходящую коробку. Подключите датчик вибрации к цепи с помощью разъема CON1. Приклейте датчик сверху коробки, если он будет использоваться для защиты багажа, или на окне или двери, если он используется в качестве вибрационной сигнализации.
Рис. 4: Компоновка печатной платы датчика вибрации.
Рис. 5. Компоновка печатной платы.
Загрузить PDF-файлы с печатной платой и компоновкой компонентов: нажмите здесь
Схема работает от батареи 4,5 В. Для зарядки аккумулятора требуется регулируемый источник питания 5В.
Источник
2 Схемы
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
Модуль датчика удара или вибрации в сигнализацию авто
В Интернете можно найти множество самодельных и фирменных конструкций датчиков удара или вибрации для автомобильных охранных сигнализаций, а также сигнализаторов обнаружения разбития дверей / окон и любых других объектов. Но основа у всех чаще всего одинакова — пьезодетектор стука (реже ставят индукционный датчик).
Устройство датчика от сигнализации
Для основы сигнализации можно взять готовое устройство, которое называется на Алиэкспрессе «Модуль датчика вибрации автомобиля / мотоцикла».
Вот основные технические параметры этого устройства:
- Номинальное напряжение: 12 В постоянного тока
- Рабочее напряжение: 5-15 В постоянного тока
- Ток покоя: 6 мА
- Выходной ток: 100 мА (максимальный ток нагрузки).
Цветовой код провода: белый, синий или зеленый — выход сигнала (односекундный понижающий сигнал в активном состоянии), черный — земля, красный — плюс источника питания.
Далее можете увидеть внешний вид и внутреннюю часть устройства, после снятия крышки.
Основными компонентами печатной платы выступают пьезоэлектрический элемент и 8-контактный чип. Пьезоэлектрики легко доступны, поэтому во многих проектах они служат дешевыми шумоуловителями. Здесь пьезик используется как датчик удара / вибрации, а дополнительная пружина с небольшой массой на подвесном конце делает его более чувствительным. Чёрный 8-контактный чип представляет собой операционный усилитель (LM358), который обрабатывает выходные сигналы, поступающие от пьезоэлектрического датчика, для получения сигнала управления выхода. Встроенный потенциометр нужен для установки чувствительности обнаружения стука. Вот его схема. Значения большинства компонентов здесь не помечены — это намеренно из-за определенных ограничений.
Первоначально тестировался модуль с входами питания 5 В и 12 В, и он работал как и положено. В случае удара или вибрации его выходной сигнал изменяется с высокого на низкий примерно на одну секунду, что также отображается красным светодиодом. Скорее всего выходное напряжение не находится на «фиксированном» уровне — оно всего на несколько вольт ниже фактического уровня Vcc — это вполне естественно, потому что практически нет встроенного стабилизатора напряжения или чего-либо подобного, чтобы обеспечить стабильное напряжение на микросхеме операционного усилителя. А это приведет к серьезным проблемам при использовании интерфейса с микроконтроллером — будьте осторожны при подключении к МК.
Как показала практика, потенциометр управления чувствительностью не имеет смысла, поскольку устройство может улавливать удары / вибрацию только тогда, когда ручка потенциометра находится на максимальном перемещении, хотя это и не большая проблема.
Автомобильные датчики удара, предназначенные для обнаружения вибраций, вызванных движением транспортного средства, защищают стекла и колеса вашего авто. Активные действия злоумышленников вызывают прохождение ударных волн через металлическую конструкцию автомобиля. Поднятие авто домкратом и откручивание колесных гаек также может вызвать вибрации. Датчик удара автомобиля посылает сигнал на подключенную охранную сигнализацию, когда происходит какое-либо подобное событие.
Настройка датчика для микроконтроллеров
Предлагаемая схема подключения чуть изменена. Теперь датчик удара готов к работе с любым микроконтроллером (например под Ардуино) — независимо от того как он запитан.
Просто подключитесь к микроконтроллеру или к таймеру 555 — всё будет работать и запускать исполнительное устройство. Здесь BC847B (код SMD 1FW) — это транзистор общего назначения для коммутации и усилителей. Этот NPN-транзистор имеет максимальное напряжение коллектор-эмиттер 45 В и ток коллектора 100 мА.
Вот еще одна простая идея: добавим активный пьезо-зуммер между контактами vcc и out 3-контактного разъема, поэтому в активном состоянии будет визуальное и звуковое предупреждение об ударе / вибрации продолжительностью в одну секунду.
Возможно, вы захотите разместить электромагнитное реле для управления мощной нагрузкой, например, ревуном авто, но тогда понадобится реле слаботочного типа.
Выходной каскад автомобильного датчика ударов может использоваться для взаимодействия с различными электронными схемами. Его внутренний транзистор выключен в состоянии ожидания. Но когда пьезоэлектрический элемент обнаруживает удар или вибрацию, небольшое напряжение обрабатывается операционным усилителем, и транзистор включается, обнуляя конечный выход на 3-проводном разъеме.
Эти маленькие автомобильные датчики удара очень дешевы и их можно найти на eBay, Aliexpress, Banggood и многих других сайтах по электронике.
Самодельный датчик удара или вибрации
И раз уж мы заговорили про схемотехнику датчиков — вот пример такого самодельного устройства:
Достаточно чуть к нему прикоснуться или ударить, как стрелка микроамперметра подпрыгнет вверх. Последовательно с микроамперметром следует поставить подстроечный резистор, чтобы регулировать его чувствительность. В схеме используется одинарный операционный усилитель LM358, можно использовать и его аналоги, например, TL071.
Минимальное напряжение питания зависит от выбора операционного усилителя, если применить LM358, то минимальное напряжение питания будет 3 вольта, если взять TL072 – то схема будет работать минимум от 7 вольт. Не следует повышать напряжение питания более 16 В.
Низкоомный резистор R4 на схеме задаёт чувствительность. Чем меньше его сопротивление, тем более чуткой становится схема даже к мелким ударам. Не следует понижать его сопротивление ниже 0,33 ома, чувствительности схемы и так хватает. Вместо стрелочника можно поставить светодиод, тогда он будет мигать во время ударов.
Источник