- Детектор стекла в бесплатном мобильном приложении
- Детектор стекла в мобильном приложении
- Определение наличия специального покрытия с помощью детектора стекла
- Мобильное приложение проверит толщину стекла в окне
- Принципы снятия звуковой информации со стекла и ее защита
- Как устроены и работают датчики разбития стекла
- Название книги
- Как собрать шпионские штучки своими руками
- Корякин-Черняк С. Л.
- Глава 6. Снятие информации со стекла и борьба с ним
Детектор стекла в бесплатном мобильном приложении
Мобильные приложения пользуются все большей популярностью среди владельцев смартфонов. Детектор проверки стекла в мобильном приложении – еще одна полезная функция для покупателей окон, которая позволяет определить тип и толщину стекла в установленном окне. Какие выгоды предлагает приложение его обладателям в материале ОКНА МЕДИА.
Детектор стекла в мобильном приложении
У многих людей уже установлены современные окна и если на оконном профиле и оконной фурнитуре можно найти какую-то информацию о комплектующих, то прозрачное стекло безмолвствует. Разобраться, какими свойствами обладает стекло, поможет бесплатное мобильное приложение Coating detection от компании AGC. Ведущий мировой производитель стекла разработал специальное приложение в помощь покупателям окон для проверки вида и толщины стекла, установленного в окне. Мобильное приложение полезно как покупателям, которые собираются купить или только что приобрели окна, так и обладателям существующих окон и работникам рынка окон.
Определение наличия специального покрытия с помощью детектора стекла
Обычному покупателю окон сложно при покупке выявить недостатки окон, они станут ощутимы только в процессе эксплуатации. А поводов для беспокойства достаточно, к примеру, в солнечные дни стекло начинает сильно нагревается, создавая дискомфорт, или обратная ситуация — когда зимой от окна сильно тянет холодом (конвекционный сквозняк, возникает в случае низкой температуры внутреннего оконного стекла). Детектор в виде мобильного приложения безошибочно определит: есть ли в стекле специальное тепло и/или энергосберегающее покрытие, возможно, обещанного продавцом. Если жить с такими окнами не комфортно, стеклопакет можно заменить, а если действует гарантийный срок — бесплатно.
Фото: приложение доступно для бесплатного скачивания в популярных интернет-магазинах
Чтобы понять, есть ли специальное покрытие в стеклопакете, нужно, нажав кнопку сканирования в приложении, установленного в смартфоне, вплотную поднести его к стеклу, и отклонить под углом 45 ̊. При помощи подсветки смартфона на стекло проецируется изображение. Отличие какого-либо сегмента проекции на стекле по цвету будет сигнализировать о том, что на стекле имеется покрытие, о чем сообщит детектор.
Мобильное приложение проверит толщину стекла в окне
К сожалению, сегодня многие производители стекла предпочитают экономить на его производстве, снижая толщину. Определить на глаз толщину стекла невозможно.
Функция Calculate glass thickness, приложения Coating detection поможет определить толщину всех стекол, установленных в стеклопакете. Обязательный стандарт использования толщины стекла в стеклопакете составляет не менее 4 мм, если по проекту не предусмотрено другой, большей толщины стекла. Если стекло будет тоньше даже на 0,5 мм, то в результате толщина двухкамерного стеклопакета, состоящего из трех стекол уменьшится на 1,5 мм. Образуется зазор между стеклопакетом и мягким уплотнением штапика. Это приведет к отсутствию герметичности установки стеклопакета в конструкцию окна и возникнет продувание и промерзание окна.
Определяется толщина стекла в окне так же, как и наличие покрытия — требуется поднести к стеклу смартфон под углом 45 ̊.
Установить приложение можно совершенно бесплатно в смартфоны с Android, iOS и Windows, скачав его в App Store, Google Play или Windows Store
Видео: приложение с функцией обнаружения покрытия на стекле
Приложение автоматически обновляется и со временем предложит своим пользователям новые функции.
Источник
Принципы снятия звуковой информации со стекла и ее защита
Внимание. Использование данного устройства в некоторых случаях запрещено законодательством РФ и может привести к административной или уголовной ответственности.
В последние годы появилась информация, что спецслужбы различных стран для несанкционированного получения речевой информации все чаще используют дистанционные портативные средства акустической разведки.
Самыми современными и эффективными считаются лазерные системы акустической разведки, которые позволяют воспроизводить речь, любые другие звуки и акустические шумы при лазерно-локационном зондировании оконных стекол и других отражающих поверхностей.
По свидетельству прессы (в том числе и специальных изданий), в США, например, в середине 80-х годов продавцы спец-техники отметили всплеск интереса у покупателей именно к лазерным микрофонам. Не меньший интерес в настоящее время проявляется к данным изделиям и в России.
На сегодняшний день создано целое семейство лазерных средств акустической разведки. В качестве примера можно привести систему SIPE LASER 3-DA SUPER. Данная модель состоит из следующих компонентов:
- источника излучения (гелий-неоновый лазер);
- приемника этого излучения с блоком фильтрации шумов;
- двух пар головных телефонов;
- аккумулятора питания и штатива.
Работает эта система так. Наводка лазерного излучения на оконное стекло нужного помещения осуществляется с помощью телескопического визира. Изменять угол расходимости выходящего, пучка позволяет оптическая насадка, высокая стабильность параметров достигается благодаря использованию системы автоматического регулирования. Модель обеспечивает съем речевой информации с оконных рам с двойными стеклами с хорошим качеством на расстоянии до 250 м.
Физические основы перхвата речи лазерными микрофонами
Рассмотрим кратко физические процессы, происходящие при перехвате речи с помощью лазерного микрофона. Зондируемый объект обычно оконное стекло представляет собой своеобразную мембрану, которая колеблется со звуковой частотой, создавая фонограмму разговора.
Генерируемое лазерным передатчиком излучение, распространяясь в атмосфере, отражается от поверхности оконного стекла и модулируется акустическим сигналом, а затем воспринимается фотоприёмником, который и восстанавливает разведываемый сигнал.
В данной технологии принципиальное значение имеет процесс модуляции. Звуковая волна, генерируемая источником
акустического сигнала, падает на границу раздела воздух-стекло и создает своего рода вибрацию, то есть отклонения поверхности стекла от исходного положения. Эти отклонения вызывают дифракцию света, отражающегося от границы.
Если размеры падающего оптического пучка малы по сравнению с длиной «поверхностной» волны, то в суперпозиции различных компонент отраженного света будет доминировать дифракционный пучок нулевого порядка:
- во-первых, фаза световой волны оказывается промоду-лированной по времени с частотой звука и однородной по сечению пучка;
- во-вторых, пучок «качается» с частотой звука вокруг направления зеркального отражения.
На качество принимаемой информации оказывают влияние следующие факторы:
- параметры используемого лазера (длина волны, мощность, когерентность и т. д.);
- параметры фотоприемника (чувствительность и избирательность фотодетектора, вид обработки принимаемого сигнала и т. д.);
- наличие на окнах защитной пленки;
При установке слоя защитной и слоя тонирующей пленки значительно снижается уровень вибрации стекла, вызываемой акустическими (звуковыми) волнами. Снаружи трудно зафиксировать колебания стекла, поэтому трудно выделить звуковой сигнал в принятом лазерном излучении.
- параметры атмосферы (рассеяние, поглощение, турбулентность, уровень фоновой засветки и т. д.);
- качество обработки зондируемой поверхности (шероховатости и неровности, обусловленные как технологическими причинами, так и воздействием среды грязь, царапины);
- уровень фоновых акустических шумов;
- уровень перехваченного речевого сигнала; конкретные местные условия.
Все эти обстоятельства накладывают свой отпечаток на качество фиксируемой речи, поэтому нельзя принимать на веру данные о приеме с дальности в сотни метров эти цифры получены в условиях полигона, а то и расчетным путем.
Из всего вышесказанного можно сделать следующие выводы:
- лазерные системы съема существуют и являются при грамотной эксплуатации весьма эффективным средством получения информации;
- лазерные микрофоны не является универсальным средством, так как многое зависит от условий применения;
- не все то является лазерной системой разведки, что так называется продавцом или производителем;
- без квалифицированного персонала тысячи и даже десятки тысяч долларов, потраченные на приобретение лазерного микрофона, пропадут зря;
- службы безопасности должны разумно оценить необходимость защиты информации от лазерных микрофонов.
Рис. 6.1. Принцип работы лазерного микрофона
Рис. 6.2. Объективы оптического передатчика и оптического приемника ЛСАР
Принцип работы лазерного микрофона представлен на рис. 6.1. А на рис. 6.2 показаны объективы оптического передатчика и оптического приемника ЛCAP.
Литература: Корякин-Черняк С. Л. Как собрать шпионские штучки своими руками.
Источник
Как устроены и работают датчики разбития стекла
Электроконтактные датчики разбития стекла
В конце прошлого века датчиками разбития стекла служили в основном полоски фольги — электроконтактные датчики,- которые часто можно было заметить на витринах магазинов, а также на окнах общественных зданий. Эти проводящие полоски были наклеены по периметру стекла, и подключены к сигнальному устройству.
Если окно разбивалось и полоска фольги рвалась, сигнальная цепь таким образом размыкалась, что и приводило к включению сирены. То есть контроль целостности стекла в случае электроконтактного датчика осуществлялся, можно сказать, механически, и при адекватной настройке мог бы сработать даже от удара по стеклу.
Кстати, детектором в подобной системе может выступать не обязательно фольга, но и достаточно тонкий провод в легко разрушаемой изоляции. Если используется фольга, то она покрывается лаком. В дежурном режиме по проводнику течет электрический ток.
Сегодня данная технология считается устаревшей. Монтаж хрупких элементов сопряжен с трудностями, тем более при случайном разрыве во время монтажных работ, такой проводник нельзя просто взять и спаять. Да и витрину отнюдь не украшает полоска фольги, наклеенная по периметру, — просто портит вид.
Наконец, такой датчик явно виден, и злоумышленнику ничего не стоит прорезать стекло аккуратно, воспользовавшись современными возможностями работы со стеклом.
Пьезоэлектрические датчики разбития стекла
Пьезоэлектрические датчики разбития стекла также устанавливаются непосредственно на поверхность стекла, но реагируют не на разрушение стекла непосредственно, а на колебания, распространяющиеся по стеклу в результате механического удара по нему. Таким образом, еще до того как стекло разобьется, пьезоэлемент преобразует механические колебания в электрический сигнал.
Данные детекторы подходят для стекол небольшой площади и для пластиковых окон. Если же площадь поверхности стекла значительна, то ограничение по чувствительности датчика может просто не позволить ему сработать.
Акустические датчики разбития стекла
Сегодня датчиками разбития стекла все чаще выступают электронные акустические устройства, чувствительные к звуковым волнам, характерным для разбивающегося стекла или для удара по стеклу. Они формируют сигнал тревоги в момент улавливания звуковой волны из спектра, характерного именно для разбивающегося стекла (или для удара).
Датчик устанавливается на некотором расстоянии от стекла, в зависимости от чувствительности и параметров датчика, обычно внутри помещения (например на потолке или на стене). Акустические датчики имеют широкие возможности настройки чувствительности, отличаются высокой точностью распознавания характерных звуков и быстротой реакции.
Алгоритм срабатывания акустического датчика разбития приблизительно следующий. Звуковая волна падает на микрофон и тут же преобразуется в электрический сигнал.
Электронная схема датчика обрабатывает данный электрический сигнал, анализирует его по высокочастотной (разбитие стекла) и низкочастотной (удар по стеклу) компонентам, сравнивает параметры с заданными настройками устройства пороговыми значениями.
В случае если сигнал соответствует разбитию (или удару), генерируется тревожный сигнал, могущий служить триггером для включения камеры видеонаблюдения или подачи команды на пульт охраны.
Источник
Название книги
Как собрать шпионские штучки своими руками
Корякин-Черняк С. Л.
Глава 6. Снятие информации со стекла и борьба с ним
Из главы 3 стало понятно, что собрать «жучок» совсем несложно. Однако и обнаружить такие радиомикрофоны можно без особого труда, стоит только применить детектор поля, рассмотренный выше.
Вместе с тем, существует принципиально иной способ снятия информации. С оконного стекла!
Лазерные средства акустической разведки
В последние годы появилась информация, что спецслужбы различных стран для несанкционированного получения речевой информации все чаще используют дистанционные портативные средства акустической разведки.
Самыми современными и эффективными считаются лазерные системы акустической разведки, которые позволяют воспроизводить речь, любые другие звуки и акустические шумы при лазерно-локационном зондировании оконных стекол и других отражающих поверхностей.
По свидетельству прессы (в том числе и специальных изданий), в США, например, в середине 80-х годов продавцы спецтехники отметили всплеск интереса у покупателей именно к лазерным микрофонам. Не меньший интерес в настоящее время проявляется к данным изделиям и в России ().
На сегодняшний день создано целое семейство лазерных средств акустической разведки. В качестве примера можно привести систему SIPE LASER 3-DA SUPER. Данная модель состоит из следующих компонентов:
— источника излучения (гелий-неоновый лазер);
— приемника этого излучения с блоком фильтрации шумов;
— двух пар головных телефонов;
— аккумулятора питания и штатива.
Работает эта система так. Наводка лазерного излучения на оконное стекло нужного помещения осуществляется с помощью телескопического визира. Изменять угол расходимости выходящего, пучка позволяет оптическая насадка, высокая стабильность параметров достигается благодаря использованию системы автоматического регулирования. Модель обеспечивает съем речевой информации с оконных рам с двойными стеклами с хорошим качеством на расстоянии до 250 м.
Физические основы перехвата речи лазерными микрофонами
Рассмотрим кратко физические процессы, происходящие при перехвате речи с помощью лазерного микрофона. Зондируемый объект — обычно оконное стекло — представляет собой своеобразную мембрану, которая колеблется со звуковой частотой, создавая фонограмму разговора.
Генерируемое лазерным передатчиком излучение, распространяясь в атмосфере, отражается от поверхности оконного стекла и модулируется акустическим сигналом, а затем воспринимается фотоприёмником, который и восстанавливает разведываемый сигнал.
В данной технологии принципиальное значение имеет процесс модуляции. Звуковая волна, генерируемая источником акустического сигнала, падает на границу раздела воздух-стекло и создает своего рода вибрацию, то есть отклонения поверхности стекла от исходного положения. Эти отклонения вызывают дифракцию света, отражающегося от границы.
Если размеры падающего оптического пучка малы по сравнению с длиной «поверхностной» волны, то в суперпозиции различных компонент отраженного света будет доминировать дифракционный пучок нулевого порядка:
— во-первых, фаза световой волны оказывается промодулированной по времени с частотой звука и однородной по сечению пучка;
— во-вторых, пучок «качается» с частотой звука вокруг направления зеркального отражения.
На качество принимаемой информации оказывают влияние следующие факторы:
— параметры используемого лазера (длина волны, мощность, когерентность и т. д.);
— параметры фотоприемника (чувствительность и избирательность фотодетектора, вид обработки принимаемого сигнала и т. д.);
— наличие на окнах защитной пленки;
При установке слоя защитной и слоя тонирующей пленки значительно снижается уровень вибрации стекла, вызываемой акустическими (звуковыми) волнами. Снаружи трудно зафиксировать колебания стекла, поэтому трудно выделить звуковой сигнал в принятом лазерном излучении.
— параметры атмосферы (рассеяние, поглощение, турбулентность, уровень фоновой засветки и т. д.);
— качество обработки зондируемой поверхности (шероховатости и неровности, обусловленные как технологическими причинами, так и воздействием среды — грязь, царапины);
— уровень фоновых акустических шумов;
— уровень перехваченного речевого сигнала; конкретные местные условия.
Все эти обстоятельства накладывают свой отпечаток на качество фиксируемой речи, поэтому нельзя принимать на веру данные о приеме с дальности в сотни метров — эти цифры получены в условиях полигона, а то и расчетным путем.
Из всего вышесказанного можно сделать следующие выводы:
— лазерные системы съема существуют и являются при грамотной эксплуатации весьма эффективным средством получения информации;
— лазерные микрофоны не является универсальным средством, так как многое зависит от условий применения;
— не все то является лазерной системой разведки, что так называется продавцом или производителем;
— без квалифицированного персонала тысячи и даже десятки тысяч долларов, потраченные на приобретение лазерного микрофона, пропадут зря;
— службы безопасности должны разумно оценить необходимость защиты информации от лазерных микрофонов.
Принцип работы лазерного микрофона представлен на рис. 6.1.
Рис. 6.1. Принцип работы лазерного микрофона
А на рис. 6.2 показаны объективы оптического передатчика и оптического приемника ЛCAP.
Рис. 6.2. Объективы оптического передатчика и оптического приемника ЛСАР
Защита от лазерного микрофона своими руками
Схема № 1. Но даже лазерному детектору можно поставить помеху. На рис. 6.3 показана схема, модулирующая стекло.
Резонирующим элементом служит пьезоэлемент, который жестко крепится по центру стекла для обеспечения максимальной амплитуды. Схема собрана на ТТЛ микросхемах, потребляющих большой ток, поэтому для питания необходимо использовать сетевой блок питания.
Пьезодатчик модулирует стекло таким образом, что амплитуда модуляции стекла выше, чем модуляция голосом при средней громкости произношения. Кроме того, пьезоэлемент модулирует стекло на разных частотах, что еще больше затрудняет съем информации через стекло.
Схема № 2. Существует и более простая схема срыва прослушивания (рис. 6.4).
В качестве модулятора с частотой 50 Гц используется обычное малогабаритное реле постоянного тока РЭС 22, РЭС 9.
Выводы обмотки подключаются к переменному току напряжением чуть ниже порога срабатывания. Реле жестко крепится к стеклу клеем ЭПД. Так же можно попробовать совсем элементарную схему для защиты от ЛСАР.
Рис. 6.4. Схема срыва прослушивания
Все мы знаем закон физики — «Угол падения равен углу отражения». Это значит, что надо находиться строго перпендикулярно окну прослушиваемого помещения. Из квартиры напротив вы вряд ли поймаете отраженный луч, так как стены здания обычно, я уж не говорю об окнах, немного кривоваты и отраженный луч пройдет мимо.
Перед важным совещанием приоткройте окно, и пока шпионы бегают по соседним зданиям и ищут отраженный луч, вы, наверняка, успеете обсудить все важные моменты, а если менять положение окна каждые 5—10 мин. (приоткрыть, закрыть), то все желание прослушивать вас после такого марафона пройдет.
Проблема противодействия съему информации с использованием лазерного излучения остается весьма актуальной и в то же время одной из наименее изученных по сравнению с другими, менее «экзотическими» средствами промышленного шпионажа.
Использование ИК-диапазона для снятия информации с оконного стекла
Использование этих устройств в некоторых случаях запрещено законодательством РФ и может привести к административной или уголовной ответственности.
Выше отмечалось, что звуковые волны в помещении вызывают микровибрации оконных стекол. Но на окно можно направить не только лазерный луч (что очень дорого, десятки тысяч долларов стоит лазерный микрофон), но и поток ИК-излучения. И в этом случае большая часть ИК-излучения пройдет через стекло внутрь, однако будет и отражение. При этом отраженный поток окажется промодулированным речевой информацией. Такую систему может создать и радиолюбитель.
Устройство стоит из двух относительно независимых частей: ИК-передатчика; ИК-приемника.
Принципиальная схема ИК-передатчика показана на рис. 6.5, а. В приведенном на рис. 6.5, б варианте схема с К1401УД4 обеспечивала уверенный съем информации с расстояния 5—10 м, вариант с TLE2074CN обеспечивал съем информации с расстояния до 15–20 м. Кроме того, второй вариант в силу более низкого уровня шумов позволял уверенно разбирать тихие слова даже на фоне громкой музыки.
Рассмотрим передатчик. Основу передатчика составляет генератор прямоугольных импульсов на микросхеме D1. Выходной сигнал генератора с частотой 35 кГц поступает на базу транзистора VT1, который совместно с VT2 образует составной транзистор. При помощи этого транзистора коммутируется ИК-светодиод VD1.
Рис . 6.5. Устройство для снятия информации со стекла по ИК-каналу: а —схема ИК-передатчика;
б —схема ИК-приемника
Отраженный сигнал поступает на вход приемника, схема которого показана на рис, 6.5, б . Принятый фотодиодом VD1 сигнал поступает на вход усилителя, собранного на ОУ А1.1.
Здесь вся полоса принятых частот усиливается в два раза, а также обеспечивается согласование фотодиода с последующими каскадами. На ОУ А1.2 собран активный полосовой фильтр, настроенный на частоту 34,67 кГц, т. е. на частоту несущей передатчика.
Коэффициент усиления каскада равен 100, полоса пропускания с неравномерностью 3 дб — 6,8 кГц, это обеспечивает избирательное усиление несущей и боковых полос. Такое построение схемы позволяет максимально ослабить действие помех и паразитного фона от осветительных приборов.
С выхода А1.2 сигнал поступает на амплитудный детектор, построенный по классической схеме, не требующей пояснений, На ОУ А1.3 и транзисторах VT1 и VT2 построен УНЧ, нагрузкой которого служат высокоомные телефоны ТМ-2А или аналогичные. Развязка узлов схемы по питанию осуществляется цепями R1 C1, R14 С9, R15 С8.
Наладка правильно собранной схемы сводится к подстройке частоты передатчика резистором R1 до получения на выходе приемника максимальной амплитуды сигнала. ОУ К1401УД4 не имеет прямой замены среди отечественных микросхем, но вместо А1.1 и А1.2 можно применить любые ОУ с полевыми транзисторами на входе и частотой единичного усиления не менее 2,5 МГц. А1.3 можно заменить на любой ОУ широкого применения.
Во время испытаний устройства проверялся такой вариант: КР574УД2Б и К140УД708. Заметно повысить характеристики приемника можно, если применить малошумящие ОУ TLE2074CN и TLE2144CN фирмы Texas Instruments.
Цоколевка этих микросхем полностью совпадает с цоколевкой К1401УД4. Светодиод и фотодиод можно взять зарубежного производства от систем ДУ телевизоров.
Чувствительность устройства можно повысить дополнительными ИК-светодиодами, включенными параллельно VD1 передатчика (через свои ограничительные резисторы). Можно также увеличить коэффициент усиления приемника, добавив каскад, аналогичный каскаду на А1.2. Для этого можно использовать свободный ОУ микросхемы А1.
Конструктивно светодиод и фотодиод расположены так, чтобы исключить прямое попадание ИК-излучения светодиода на фотодиод, но уверенно принимать отраженное излучение.
Питание приемника осуществляется от двух батареек типа «Крона», передатчик питается от четырех элементов типа R20 суммарным напряжением 6 В (1,5 В каждый).
В инфракрасных устройствах с передачей и приемом луча приемник и передатчик принято выполнять автономными блоками, хотя в большинстве случаев они, как минимум, имеют общий источник питания, а то и расположены рядом друг с другом ().
Поэтому если к двум проводам, идущим к приемнику от общего с передатчиком источника питания, прибавить всего один провод синхронизации, то можно получить замечательное устройство. Оно будет работать по принципу синхронного детектора и обладать такими его свойствами, как: избирательность; помехоустойчивость; возможность получения большого усиления.
И это без применения многокаскадных усилителей со сложными фильтрами.
Внутри помещения даже без использования дополнительной оптики и мощных излучателей устройство можно применять как охранную сигнализацию, срабатывающую при пересечении инфракрасного луча на расстоянии от излучателя до приемника 3–7 м.
Причем устройство не реагирует на внешнюю засветку от посторонних источников, как постоянную (солнце, лампы накаливания), так и модулируемую (люминесцентное освещение, фонарик).
Снабдив светодиод приемника собирающей линзой, можно перекрыть несколько десятков метров расстояния на открытом пространстве, имея отличную помехоустойчивость даже при идущем слабом снеге. При использовании линз на приемнике и передатчике одновременно возможно перекрытие еще большего расстояния, но возникает проблема точного наведения узкого луча передатчика на линзу приемника.
Генератор передатчика (рис. 6.6) собран на интегральном таймере DA1 включенном по схеме мультивибратора. Частота мультивибратора выбрана в диапазоне 20–40 кГц, но может быть любой. Она лишь ограничена снизу величиной конденсаторов С7, С8 и сверху частотными свойствами таймера.
Сигнал мультивибратора через ключ на VT5 управляет светодиодами передатчика VD2—VD4. Мощность излучения передатчика можно подбирать, меняя число светодиодов или ток через них резистором R17. Так как диоды работают в импульсном режиме, амплитудное значение тока через них можно выставить вдвое-втрое выше постоянно допустимого.
Рис. 6.6. Схема передатчика
Рис. 6.7 . Схема приемника
Инфракрасный приемник (рис. 6.7) выполнен на дискретных элементах VD1, VT1—VT4, R1—R12,С1—С4 по схеме, использовавшейся во многих советских телевизорах. Его с успехом можно заменить импортным интегральным ИК-приемником, имеющим к тому же инфракрасный светофильтр. Однако желательно, чтобы на выходе приемника не формировался цифровой сигнал, то есть его тракт был бы линейным.
Далее усиленный сигнал поступает на синхронный детектор, выполненной на КМОП мультиплексоре DD1 и управляемый сигналом таймера DA1. На выходах 3,13 DD1 имеется полезный противофазный сигнал, который усиливается дифференциальным интегратором на ОУ DA2. Элементы R19, R20; С10, С11; R21, R22 интегратора определяют уровень усиления сигнала, полосу пропускания приемника и скорость отклика.
Уровень «земли» интегратора определяется стабилитроном VD5, и выбран как можно меньшим, (но чтобы ОУ DA2 не входил в ограничение), так как полезный сигнал на выходе DA2 будет положительным.
На ОУ DA3 выполнен триггер Шмитта. Совместно с пиковым детектором на элементах R24, VD6, R25, С12 он исполняет роль компаратора для формирования сигнала срабатывания. Падение напряжения на Диоде VD6 уменьшает уровень пикового напряжения на величину 0,4–0,5 В. Это задает «плавающий» порог срабатывания сигнализации, величина которого плавно меняется в зависимости от расстояния между приемником и передатчиком, уровня засветок, помех. При нормальном прохождении луча светодиод VD7 будет светиться, при пересечении луча светодиод гаснет.
К деталям, применяемым в схеме, никаких особых требований нет. Элементы могут быть заменены аналогичными импортными или отечественными. Резистор R25 составлен из двух последовательных по 5,1 МОм. Фотодиод VD1 с усилителем обязательно должен быть помещен в металлический заземленный экран для предотвращения наводок.
Схема настройки не требует, но следует быть внимательным при испытании устройства. Сигнал передатчика может попадать в приемник в результате отражения от близлежащих предметов и не даст увидеть результат функционирования схемы. Удобнее всего во время отладки уменьшить ток светодиодов излучателя до долей миллиампера.
Для работы устройства в качестве ИК сигнализации работающей на пересечение луча к устройству (рис. 6.6) можно подключить блок индикации (рис. 6.7). Переключателем SA2 выбирается режим работы блока индикации. В положении «ОДНОКРАТНО» при пересечении луча формируется один звуковой сигнал длительностью 1 с. В положении «ПОСТОЯННО» звуковой сигнал звучит постоянно до сброса блока кнопкой SA1.
Помимо работы устройства в режиме, когда излучатель направлен на приемник, можно направить их в одну сторону (конечно, исключив непосредственное попадание луча передатчика в приемник).
Таким образом, будет реализована схема ИК-локатора (например, для парковочного датчика автомобиля). Если же снабдить ИК передатчик и приемник собирающими линзами и направить их, например, на оконное стекло, то отраженный ИК сигнал будет промодулирован с частотой звуков в помещении.
Для прослушивания такого сигнала на выход DA2 необходимо подключить амплитудный детектор с усилителем низкой частоты и заменить С10, С11 конденсаторами емкостью 100 пФ, резисторы R21, R22— 300 кОм, R19, R20 — 3 кОм.
Вообще, от емкости конденсаторов С10, С11 интегратора зависит возможность получения большого уровня усиления. Чем емкость конденсаторов больше, тем больше сглаживаются случайные помехи и тем больше можно получить усиление. Однако ради этого приходится жертвовать быстродействием устройства.
Противодействие снятию со стекла информации по ИК-каналу
Каждому действию всегда находится противодействие. Так для защиты информации были придуманы модуляторы стекла, т. е. устройства, создающие помехи, широкополосный акустический шум, модулирующий оконное стекло с псевдослучайной последовательностью.
Схема № 1. Рассмотрим модулятор стекла с плавающей частотой, созданный на микросхеме K561ЛE5. Этот модулятор предназначен для создания помех устройствам, считывающим звуки с поверхности оконного стекла. Модулятор питается от сети переменного тока напряжением 220 В. Принципиальная схема модулятора приведена на рис. 6.8.
Рис 6.8. Схема модулятора стекла
Напряжение сети гасится резисторами R1 и R2 и выпрямляется диодом VD1 типа КД102А. Конденсатор С1 уменьшает пульсации выпрямленного напряжения. Модулятор выполнен на одной микросхеме K561ЛE5. По своему схемному построению он напоминает генератор качающей частоты или частотный модулятор.
На элементах DD1.3 и DD1.4 собран управляющий генератор низкой частоты. С его выхода прямоугольные импульсы поступают на интегрирующую цепочку R5, С4.
При этом конденсатор С4 то заряжается через резистор R5, то разряжается через него. Поэтому на конденсаторе С4 получается напряжение треугольной формы, которое используется для управления генератором на элементах DD1.1, DD1.2.
Этот генератор собран по схеме симметричного мультивибратора. Конденсаторы С2 и СЗ поочередно заряжаются через резисторы R3 и R4 от источника треугольного напряжения. Поэтому на выходе генератора будет иметь место сигнал, частота которого «плавает» в области звуковых частот речевого диапазона. Поскольку питание генератора нестабилизировано, то это приводит к усложнению характера генерируемых сигналов. Нагрузкой генератора служат пьезокерамиче- ские излучатели ZQ1 и ZQ2 типа ЗП-1.
Микросхему DD1 можно заменить как на К561ЛА7, так и на K561ЛH1, K561ЛH2, либо на микросхемы серий 564,1561.
Излучатели ZQ1 и ZQ2 могут быть любыми, их количество может быть от одного до четырех. Они приклеиваются к стеклу и могут быть соединены последовательно или параллельно-последовательно.
Схема № 2. Следующее устройство представляет собой модулятор стекла, построенный на трех КМОП микросхемах. Схема (рис. 6.9) включает в себя: задающий генератор на частоту 50 кГц (D1.1, D1.2); формирователь псевдослучайной последовательности импульсов на сдвигающих регистрах (D2, D3); логическую схему (D1.3, D1.4).
Звуковыми излучателями (HF1, HF2) являются телефонные капсюли ВП-1 или ДЭМ-4М. Резистор R4 позволяет регулировать громкость звука. Схема может питаться от любого нестабилизированного источника с напряжением от 4 до 15 В и потребляет ток не более 20 мА.
Рис. 6.9. Схема модулятора стекла на цифровых микросхемах
В качестве источника звука подойдут и любые малогабаритные динамики (с 50-омным сопротивлением), но при этом возрастет потребляемый ток. Транзисторы можно заменить на КТ829А. При правильной сборке схема настройки не требует. Устройство выполняется в виде переносной коробки и размещается на подоконнике, вблизи от стекла.
Схема № 3. Простой модулятор стекла вызывает вибрацию стекла с различной частотой, тем самым устраняя основной недостаток простейшего модулятора. Оно выполнено на двух цифровых схемах 561 серии. В качестве вибропреобразователя используется пьезокерамический преобразователь. Принципиальная схема устройства приведена на рис. 6.10.
Модулятор собран на микросхемах К561ЛН2 и К561ИЕ8. Генератор тактовых импульсов собран на элементах DD1.1, DD1.2, резисторе R1 и конденсаторе С1 по схеме несимметричного мультивибратора.
Рис .6. 10. Схема модулятора стекла на двух цифровых схемах 561 серии
С выхода генератора тактовые импульсы поступают на вход счетчика DD2 типа К561ИЕ8. Эта микросхема имеет встроенный дешифратор. Поэтому напряжение высокого уровня поочередно появляется на выходах счетчика в соответствии с количеством пришедших импульсов.
Допустим, что после прихода очередного тактового импульса уровень логической единицы появился на выходе 2 микросхемы DD2 (выв. 4). На остальных выходах присутствует уровень логического нуля. Положительное напряжение начинает заряжать конденсатор С2 по цепи VD3, R4, R12.
При достижении на конденсаторе С2 напряжения, достаточного для открывания транзистора VT1 типа КТ-15, последний открывается, и на выходе элемента DD1.4 появляется уровень логического нуля. Конденсатор С2 быстро разряжается через диод VD11 типа КД522. Транзистор VT1 закрывается, и процесс заряда конденсатора С2 возобновляется по той же зарядной цепи.
С приходом очередного тактового импульса уровень положительного напряжения появляется только на выходе 3 (выв. 7). Теперь конденсатор С2 заряжается по цепи VD4, К5, R12. Так как суммарное сопротивление этой цепи меньше, чем сопротивление цепи VD3, R4, R12, то заряд конденсатора С2 до напряжения открывания происходит быстрее. Частота импульсов на выходе этого управляемого генератора увеличивается. Прямоугольные импульсы поступают на вибропреобразователь ZQ1, выполненный на основе пьезокерамического преобразователя.
Детали. Микросхемы DD1 и DD2 можно заменить на аналогичные — серий 176, 564, 1561. Резисторы — типа MЛT-0,125. Сопротивления резисторов R2—R11 могут быть любыми из интервала 10—1000 кОм. Резисторы одинакового номинала лучше не использовать.
Диоды VD1—VD11 могут быть любыми, например, КД521, Д9, Д18, КД510 и др. Транзистор VT1 можно заменить на КТ3102. Пьезокерамический преобразователь ZQ1 может быть любой, от игрушек или телефонных аппаратов.
Питание устройства осуществляется от батарейки типа «Крона». Вибродатчик ZQ1 приклеивается на стекло клеем «Момент». Сигнал к нему подводится по проводам от элемента DD1.6.
Настройка заключается в установке частоты тактового генератора подбором конденсатора С1 или резистора R1. Частота тактовых импульсов выбирается около 2–3 Гц.
Схема № 4. Количество генерируемых частот можно увеличить, если вместо микросхемы DD2 К561ИЕ8 использовать широко распространенную микросхему К561ИЕ10. Эта микросхема (рис. 6.11) содержит два двоичных четырехразрядных счетчика.
К выходам счетчиков подключаются резисторы R2—R9, их сопротивления могут быть также от 10 кОм до 1 МОм. Диоды VD1—VD10 из схемы исключаются. При подаче тактовых импульсов на вход CP микросхемы DD2.1 в точке соединения резисторов R2—R12 появляется, изменяющееся ступенчато, напряжение.
Число градаций напряжения, а, следовательно, и число частот, можно варьировать путем использования определенного количества разрядов счетчика DD2.
Источник