Дифференциальный пробник своими руками

Двухканальный дифференциальный пробник для осциллографа

При отладке и ремонте электронного оборудования иногда возникает потребность увидеть форму сигнала U(t) между двумя узлами схемы, ни один из которых не подключен к общему проводу. Это требуется при анализе кодовых последовательностей интерфейсов RS-485 и CAN, контроле сигналов на балансных входах и выходах звукоусилительной аппаратуры, оценке работы верхнего плеча силовых мостовых инверторов и т.п. Использовать в таких случаях обычный осциллограф затруднительно, т.к. один из выводов его входа должен быть подключен к общему проводу отлаживаемого устройства.

Решить описанную проблему позволяет дифференциальный пробник (ДП), представляющий собой инструментальный усилитель, выход которого подключается к входу осциллографа, а дифференциальные входы могут быть подключены к любым точкам отлаживаемого устройства. Работать с осциллографом, к входу которого подключен ДП, так же просто и удобно, как измерять напряжение вольтметром.

Особенно полезен ДП при работе с устройствами, имеющими непосредственную связь с электрической сетью 220/380 В. Корпус осциллографа по правилам электробезопасности должен быть заземлён. Это создаёт предпосылки для коротких замыканий, если по ошибке подключить к участку схемы, находящемуся под фазным напряжением, щуп осциллографа, связанный с его корпусом. Использование ДП полностью устраняет указанную опасность.

Большинство современных осциллографов – двухканальные. Использование двухканального ДП, подключенного к входам обеих каналов осциллографа, позволяет измерять временные соотношения и сдвиг фазы между двумя сигналами, не заботясь о задержке, вносимой ДП.

Многие фирмы, изготавливающие осциллографы, предлагают ДП в качестве опции, приобретаемой за дополнительную плату. Параметры этих ДП весьма высоки, но и цены зачастую превышают стоимость бюджетного ЦЗО.

Предлагается самодельный двухканальный ДП, отличающийся от «фирменных» более узкой полосой пропускания, составляющей 0 – 800 кГц. Стоимость комплектующих для двухканального варианта ДП не превышает 1000 руб, для одноканального – 700 руб, что примерно в 10 раз дешевле самых доступных ДП, имеющихся на рынке.

Внешний вид самодельного ДП представлен на фотографии.

Схема электрическая принципиальная ДП представлена на рисунке.

Каналы А и Б отличаются только нумерацией выводов используемых микросхем. Рассмотрим работу канала А.

Основным элементом, определяющим все параметры ДП, является инструментальный усилитель AD622AN. Он включен по стандартной схеме, рекомендованной изготовителем. Выключатель SA1 позволяет выбрать коэффициент усиления – 1 (SA1 разомкнут) или 10 (SA1 замкнут). Совместно с входным делителем на 100, собранным на резисторах R1…R4, R7, R9, это обеспечивает для ДП два коэффициента передачи 1:10 или 1:100. Конденсаторы С1…С6 обеспечивают частотную компенсацию делителя. Последовательное соединение резисторов и конденсаторов, образующих делитель, используется для повышения электрической прочности. Резисторы R5 и R6, совместно с защитными элементами, входящими в состав микросхемы DA1, повышают защищённость входа ДП при исследовании малых сигналов – когда делитель не используется. Подстроечный резистор R8 служит для балансировки входа ДП.

На микросхемах DA2.1, DA3.1, DA3.2 собрано устройство, сигнализирующее о возможном ограничении сигнала. Если напряжение на выходе DA1 окажется больше +10 В или меньше –10В, то компаратор DA3.1 или DA3.2 переключится и его выходной транзистор откроется. Чтобы светодиод HL2 светился и в том, и в другом случаях, выходы этих компараторов объединены в «монтажное ИЛИ». Амплитудные детекторы сигнализатора имеют соотношение T заряда / Т разряда примерно 1/400, по этому он корректно реагирует на импульсные сигналы с большой скважностью.

Источник питания ДП должен обеспечивать стабилизированное напряжение +/- 15В при токе 15 mA. Я использую простейший трансформаторный блок питания на микросхемах LM7815 и LM7915, схему которого не привожу в силу её банальности.

Конструкция и детали

ДП собран на макетной плате размером 87 х 56, которая помещена в стандартный металлический корпус G0473 фирмы «Gainta».

Возле выводов питания усилителей AD622AN следует расположить блокирующие конденсаторы. Провода, идущие к выключателям SA1 и SA2, не следует делать длинными – их полезно попарно перевить. В целом усилители AD622AN работают весьма устойчиво, склонности к генерации не обнаруживают, по этому никаких особых требований к расположению их «обвязки» нет.

Элементы входных делителей R1…R4, R20… R23, С1…С4, С9…С12 помещены в небольшие пластмассовые корпуса размером 45х30х12.

Каждый канал ДП настраивается под свой делитель, по этому следует нанести на них маркировку «Канал А» и «Канал Б». Кабель длиной 50 см, соединяющий делители с разъёмами XS1 и XS2, представляет собой витую пару из проводов МГТФ 0,2, которую следует поместить в термоусадочную трубку или в тонкий кембрик, а затем в экранирующую оплётку, поверх которой также следует одеть кембрик или трубку из силикона. Лучше всего, конечно, использовать готовый 2-х жильный микрофонный кабель, если таковой имеется. Входные клипсы подключены к делителям с помощью отрезков провода МГТФ 0,2 длиной по 30 см. Экспериментально проверено, что ни переменное напряжение 600 В 50 Гц ни постоянное напряжение 1000 В не вызывает пробоя изоляции щупов, а также других элементов делителей.

Резисторы R1…R4, R7, R9, R10, R20… R23, R26, R28 и R29 следует использовать однопроцентные – С2-23, MF-25 и т.п. Подстроечные резисторы R8 и R27 – многооборотные – СП5-3, СП5-14 или 3266 BOWRNS.

Если ДП будет изготавливаться в одноканальном варианте, то в качестве DA2 и DA3 следует использовать микросхемы TL081 и LM393 соответственно.

Налаживание

К входам ДП следует подключить штатные входные делители. Выходы ДП подключить к входам каналов «Y» осциллографа с помощью 2-х кабелей BNC — BNC. Установить в обеих каналах ДП коэффициент передачи 1:10. Заземлить все входные клипсы ДП, кроме входа «+» канала А, т.е. подключить их к общему проводу (корпусу) ДП. Подать на вход «+» канала А прямоугольные импульсы частотой 1 кГц с выхода калибратора осциллографа.

Подстраивая конденсаторы C1 и С2 добиться неискажённой передачи фронтов прямоугольных импульсов. При этом следует стремиться к тому, чтобы ёмкость C1 и C2 были примерно равными. Затем следует заземлить вход «+» канала А и подать тот же сигнал на вход «-» канала А — настроить частотную компенсацию его делителя. Ту же процедуру следует проделать с входами канала Б.

Для балансировки входов ДП требуется звуковой генератор, способный выдать синусоидальный сигнал амплитудой в несколько десятков вольт. При его отсутствии вполне можно использовать сетевое напряжение 220В. Предполагается, что сделанные Вами делители выдерживают такое напряжение и Вы в этом уже убедились.

Устанавливаем коэффициент передачи в обеих каналах ДП 1:100. Подключаем оба входа канала А (вход «+» и вход «-») к фазному проводу 220В, а общий провод ДП (корпус) к нулевому проводу – не перепутайте. Вращая ось подстроечного резистора R8 добиваемся минимально возможной амплитуды сигнала на экране осциллографа. У меня получилось от пика до пика меньше 1 mВ. Проделываем аналогичные процедуры с каналом Б. На этом наладка ДП закончена.

Опыт использования ДП

Как только самодельный ДП заработал мне, конечно, захотелось поставить какой-нибудь эффектный опыт с его участием. Я собрал мультивибратор на КМОП микросхеме 561-й серии и «подвесил» его к фазному проводу сети 220 вольт. Получилась вот такая схема.

Читайте также:  Герои своими руками легко

Мультивибратор вырабатывает «полезный сигнал», который благодаря делителю R2, R3 имеет амплитуду около 1 В. С помощью ДП попытаемся разглядеть этот сигнал на фоне синфазной помехи с напряжением питающей сети (двойной размах более 600 В). Задача усложняется тем, что источником помехи является реальная городская электросеть, напряжение в которой сильно отличается от синусоидального и содержит вполне ощутимые высокочастотные составляющие. Вот, что я увидел на экране осциллографа.

По моим оценкам сигнал довольно чистый, т.е. ДП успешно справился со своей задачей.

Эксплуатация ДП показала, что он работает вполне надёжно, но перед проведением ответственных измерений всё же следует проверять и, при необходимости, корректировать балансировку. Видимо это связано с невысокой временной стабильностью резисторов, использованных в делителях.

В заключении хочу посоветовать всем, кто захочет повторить эту конструкцию, прочитать фирменные руководящие материалы по применению микросхемы AD622. В них содержатся полезные сведения о допустимых уровнях синфазной и дифференциальной составляющей входного сигнала, зависимости коэффициента ослабления синфазного сигнала (КОСС или CMR) и максимального размаха выходного сигнала от частоты и т.д. Незнание этих «тонкостей» может привести к серьёзным погрешностям в оценке результатов измерения или даже к повреждению ДП.

Источник

Как одним движением сжечь 10000$ и получить удар током

Отказ от ответственности

В данной статье затрагиваются вопросы, касающиеся сетевого напряжения, которое может представлять угрозу жизни и здоровью человека, а также работоспособности приборов. Вся информация в этой статье представлена исключительно в ознакомительных целях. Вы используете указанную информацию на свой страх и риск. Автор ни в коем случае не несет ответственности за какой-либо прямой, непрямой, особый или иной косвенный ущерб в результате любого использования информации из данной статьи.

Структура источника питания

В данном разделе, конечно, мы не будем подробно рассматривать устройство импульсных преобразователей, это тема для целой серии статей. Мы рассмотрим этот вопрос в минимальном объеме, необходимом для понимания темы статьи. Итак, на рисунке ниже приведена по сути структурная схема простейшего обратноходового преобразователя. Обратноходовый преобразователь здесь выбран исключительно для примера, совершенно не важно, какая топология источника питания (прямоходовый, мост, полумост, пуш-пул или вообще балластный конденсатор), все сказанное верно для любой из них.

В ней не показаны фильтры синфазных и дифференциальных помех, цепи защиты и некоторые другие компоненты, однако для рассмотрения нашего вопроса это и не нужно. На схеме мы видим диодный мост, к которому подводится сетевое напряжение, микросхему ШИМ-контроллера, объединенную с силовым транзистором, трансформатор и цепь обратной связи. Сетевое напряжение выпрямляется диодным мостом: плюс подводится к трансформатору и коммутируется силовым транзистором, а минус образует потенциал локальной (силовой) земли. Относительного этого потенциала питается ШИМ-контроллер, измеряется напряжение обратной связи, а также относительно него подаются управляющие напряжения на затворы силового транзистора (который в данной схеме находится внутри контроллера). Если мы хотим измерить какое-то напряжение на первичной стороне, это тоже надо делать относительного этого потенциала. В общем, классический такой GND, за исключение одного нюанса: он гальванически не развязан от сети (имеет прямую связь с фазой и нейтралью через пару диодов). И вот именно этот нюанс и является решающим, однако об этом позднее.

Структура осциллографа

В данном разделе будет рассмотрен вопрос, касающейся гальванической связи как между непосредственно самими каналами осциллографа, так и между каналами осциллографа и линией заземления. Существует два типа осциллографов: с изолированными каналами и без такой изоляции. Осциллографы с изолированными каналами – довольно редкий вид приборов, и этот факт будет обязательно подчеркнут в описании устройства. Если вы никогда не задумывались о том, есть ли у вашего осциллографа такая изоляция, то, скорее всего, ее нет. Что это значит на практике? Это значит, что сопротивление между земляным хвостом щупа осциллографа и земляным выводом в сетевой розетке 230 В близко к нулю. Для лучшего понимания, этот факт продемонстрирован на рисунке ниже.

На данном рисунке показано измерение сопротивление между земляным хвостом щупа осциллографа и земляным контактом шнура питания осицллографа. Как видим, величина сопротивления очень мала и составляет всего 2,18 Ома. В реальности она еще меньше, потому что здесь не учитывалось сопротивление самих щупов мультиметра, которое может быть более 1 Ома.

Итак, сделаем важный вывод: у осциллографа земляной хвост щупа соединен с земляным контактом розетки и через нее заземлен в электрическом щитке.

Структура бытовой сети 230 В

Наиболее полное описание структуры сети 230 В, конечно, лучше найти в какой-нибудь литературе по теории электрических цепей, прочитав раздел про трехфазные цепи. В рамках данной статьи будет представлена только очень маленькая часть этого курса, имеющая непосредственное отношение к нашей проблеме.

В обычную бытовую розетку приходит как правило 3 провода: фаза, нейтраль и заземление. В старых домах советской постройки третьего провода (заземления) может и не быть. Провод заземления в общем-то соответствует своему названию: в конечном итоге он переходит в шину (контур заземления), которая закапывается глубоко в землю где-нибудь под зданием или в непосредственной близости от него (разумеется, не просто абы как, а в соответствии с определенными правилами). Этот провод предназначен для защиты человека от возможного поражения электрическим током: в случае нештатной ситуации, например, попадания напряжения на корпус прибора, ток начинает идти по проводу заземления, что приводит к срабатыванию защитной автоматики и отключению напряжения.

Нейтраль по сути своей очень близка к заземлению. Если вы внимательно рассмотрите линию электропередач в сельской местности, то заметите, что нейтральный проводник заземляется на каждой опоре.

Кроме того, нейтральный проводник заземлен также и на подстанции (здесь есть свои нюансы, но в быту обычно это так, схемы с изолированной нейтралью мы не рассматриваем).

В идеальном мире сопротивление между проводом заземления и нейтралью в розетке равно нулю, и они имеют абсолютно одинаковый потенциал. В реальном мире сопротивление проводников вносит свои коррективы и между нейтралью и заземлением имеется сопротивление порядка единиц-десятков Ом. Запомним этот факт, он пригодится нам в дальнейшем.

Фазный проводник – это непосредственно сам «рабочий» проводник, который формирует синусоиду относительно нейтрали. Синусоида в бытовой розетке имеет амплитуду порядка 325 В и колеблется в плюс и в минус относительно нейтрального проводника. Таким образом, при положительной полуволне синусоиды ток течет из фазного проводника в нейтральный, а при отрицательной полуволне наоборот – ток течет из нейтрального проводника в фазный.

Что происходит при подключении осциллографа?

Итак, сведем в кучку выводы по предыдущим разделам статьи:

  1. В сетевом импульсном источнике питания цепь локальной (силовой) земли связана с нейтралью и фазой через диоды.
  2. У осциллографа земляной хвост щупа соединен внутри него с земляным контактом розетки.
  3. Сопротивление между нейтралью и заземлением в сети мало и составляет единицы-десятки Ом.
  4. При положительной полуволне синусоиды ток течет из фазного проводника в нейтральный, а при отрицательной полуволне – из нейтрального в фазный.

Для того чтобы понять, как потекут токи при подключении осциллографа к первичной стороне импульсного источника питания, лучше всего воспользоваться моделированием. В качестве среды моделирования в последнее время я обычно использую LTSpice, поэтому анализ будем проводить в ней. Моделировать будем исключительно входные цепи преобразователя: сейчас нет необходимости включать в модель трансформатор и другую обвязку, потому что они никак не влияют на тему статьи. Я исключил из модели даже накопительный конденсатор после диодного моста, чтобы переходной процесс при его заряде не отвлекал от предмета моделирования.

Читайте также:  Велоспрингер для собаки своими руками

Для начала давайте посмотрим, как ведет себя схема без подключенного осциллографа. На рисунке ниже приведены результаты моделирования такой схемы (картинка кликабельна).

Сопротивление R1 в данном случае – это сопротивление нагрузки. Я выбрал его равным 100 кОм. Можно взять любое другое, в данном случае его величина не принципиальна. Сопротивление R2 – это сопротивление между нейтральным и проводником и заземлением. Я выбрал его равным 10 Ом. Амплитудное напряжение между фазой и нейтралью составляет 325 В, что соответствует действующему значению напряжения в 230 В, сигнал показан на зеленом графике.

Как видно из графиков тока, он нигде не превышает величины нескольких миллиампер и вся система чувствует себя хорошо.

А что будет, если подключить к такой цепи осциллограф? Результат показан на рисунке ниже (картинка кликабельна).

Как видим, в модель добавился резистор R3 с сопротивлением 2 Ома. Этот резистор соответствует сопротивлению между земляным хвостом щупа осциллографа и контактом заземления шнура питания осциллографа. Чуть выше мы проводили измерение этого параметра и получили величину равную порядка 2 Ом. Этот резистор подключен к локальной силовой земле PGND: именно к этой цепи вы скорее всего и подключите землю осциллографа, если захотите произвести измерения на первичной стороне источника питания. Но как же ведет себя при этом ток? А он вырастает до катастрофических величин. Величина тока в нашей модели составляет более 25 А! В данном случае ток ограничен величиной сопротивления между нейтралью и заземлением, внутренним сопротивлением диодного моста, а также величиной сопротивления всех проводов. И этот ток протекает, помимо всего прочего, через резистор R3, т.е. через щуп осциллографа и через его внутренние цепи. 25 А через внутренние цепи осциллографа гарантированно выжгут внутри все, что возможно, не факт даже, что уцелеет сама печатная плата. Таким образом, данная картинка весьма наглядно показывает, что будет с прибором, если вот так просто попытаться измерить сигналы на не отвязанном от сети источнике.

Если чуть проанализировать результаты выше, то становится понятным, что смертельным для осциллографа оказывается отрицательная полуволна синусоиды в розетке. Отрицательная полуволна создает в точке между диодами D1 и D3 отрицательный потенциал. К точке PGND оказывается приложен нулевой потенциал (GND) через хвост щупа осциллографа, который соединен внутри него с землей розетки. Таким образом, у нас образуется разность потенциалов, причем диод D1 оказывается включенным в прямой полярности, что и приводит к резкому росту тока. Все вышесказанное наглядно проиллюстрировано на рисунке ниже.

А как же УЗО?

Действительно, при подключении земляного хвоста осциллографа к локальной (силовой) земле на стороне сетевого напряжения возникает дисбаланс токов и это должно отрабатываться УЗО. Возможно, оно и спасет цепи осциллографа от полного выгорания, однако, увы, УЗО срабатывает отнюдь не мгновенно, время его реакции составляет десятки миллисекунд. За это время вполне успеет проскочить хотя бы одна полуволна синусоиды сетевого напряжения, которая если не выжжет прибор совсем, скорее всего, все равно повредит чувствительные входные цепи осциллографа. Кроме того, в электрическом щитке УЗО присутствует далеко не всегда. Поэтому, не смотря на то, что УЗО, безусловно, полезный компонент электропроводки, в данном случае неразумно полагаться на защиту прибора с его помощью. Но как же быть, если все-таки необходимо посмотреть какие-то сигналы у прибора, работающего от сети 230 В? На самом деле, есть несколько способов, как это можно сделать относительно безопасно, об этом в следующем разделе

Как посмотреть сигналы на стороне сетевого напряжения и не спалить приборы?

1. Использовать осциллограф с гальванически развязанными каналами

У осциллографа с гальванически развязанными каналами все каналы имеют изоляцию как друг относительно друга, так и относительно земли. Таким образом, при подключении прибора к схеме, у нас не будет образовано контура, через который может произойти короткое замыкание и выгорание схемы. Однако будьте все равно предельно внимательны, даже если у вас осциллограф с развязанными каналами. Внимательно изучите документацию на свой прибор и обратите внимание на конкретные цифры по максимально допустимому напряжению относительно земли. Если вы будете анализировать сигналы на стороне сетевого напряжения, то, скорее всего, вам понадобятся специальные высоковольтные щупы, которые позволяют проводить измерения под большим потенциалом. Использование осциллографа с развязанными каналами имеет один большой недостаток – цена. Такие осциллографы заметно дороже осциллографов с аналогичными характеристиками, земли каналов которых соединены на общем шасси. Кроме того, модельный ряд таких осциллографов довольно-таки скудный, по сравнению с классическими осциллографами, конечно же. В общем, если у вас есть осциллограф с изолированными каналами и вы умеете с ним работать, скорее всего, вы мало что нового узнали из этой статьи.

2. Использовать дифференциальный пробник

Если у вас нет осциллографа с гальванически развязанными каналами, но есть обычный, то можно развязать какой-либо его канал с использованием специального устройства, которое называется дифференциальный пробник. Пример такого устройства приведен на рисунке ниже.

С помощью данного устройства возможно относительно безопасно смотреть сигналы на стороне сетевого напряжения. Существует достаточно большое число видов подобных устройств на разные входные напряжения и частот с разными коэффициентами деления входного напряжения. Как правило это активные устройства, требующие дополнительного питания, например, устройство с рисунка выше требует адаптер 9 В. Цена подобных устройств обычно тоже не очень демократична и составляет десятки, а иногда и сотни тысяч рублей (по курсу на момент написания статьи).

3. Использовать развязывающий трансформатор

Вполне рабочий способ защитить осциллограф и посмотреть при этом сигналы на стороне сетевого напряжения – использование развязывающего трансформатора с коэффициентом трансформации 1:1 (т.е. величина напряжения на выходе трансформатора равна величине напряжения на его входе). Через такой трансформатор необходимо подключить объект исследования (например, все тот же анализируемый нами источник питания). Поясняющий рисунок с результатами моделирования приведен ниже (картинка кликабельна).

Как видим, не смотря на то, что к схеме точно таким же образом подключен заземленный хвост щупа осциллографа, на графиках тока нет никаких запредельных величин. Ток через внутренности осциллографа (через сопротивление R3) равен нулю, а амплитуда тока источника питания и нагрузки составляет несколько миллиампер, как было у нас при не подключенном осциллографе. Это происходит потому, что теперь у нас земля PGND гальванически развязана от сетевого напряжения. Однако это вовсе не значит, что теперь все безопасно для человека: на выходе трансформатора по-прежнему 230 В действующего напряжения, которые могут представлять смертельную опасность.

При использовании развязывающего трансформатора помимо коэффициента трансформации необходимо также обязательно посмотреть на такой параметр, как максимально допустимая мощность. Очевидно, что потребляемая вашей нагрузкой мощность не должна превышать максимально допустимую мощность, на которую рассчитан трансформатор. Таким образом, этот способ вряд ли подойдет для анализа установок на несколько киловатт: габариты и масса требуемого трансформатора будут слишком велики.

Читайте также:  Как восстановить отражатель для фары своими руками

4. Использовать лабораторный источник питания

Если ваш объект исследования – импульсный источник питания, то безопасно посмотреть его первичные цепи можно запитав его не от сети 230 В, а через лабораторный источник питания постоянного тока. Внутри такого источника питания всегда стоит трансформатор, таким образом достигается гальваническая развязка, и осциллограф можно безбоязненно подключать к анализируемой схеме. Поскольку на входе импульсного источника питания стоит выпрямитель, то для его работы нет большой разницы, подадите вы на вход синусоиду или же постоянное напряжение. Разумеется, величина этого постоянного напряжения должна соответствовать выпрямленному сетевому напряжению с каким-либо допуском. На прошлой работе в качестве такого источника питания мы использовали источник Б5-50, он изображен на рисунке ниже.

Он выглядит не очень современно, однако умеет выдавать на выходе напряжение до 300 В и неплохо подходит для отладки схем мощностью до пары сотен ватт.

Дополнительный очень жирный плюс использования лабораторного источника питания при отладке – вы можете выставить на источнике питания необходимое ограничение по току. Таким образом, даже если схема неисправна, у вас не будет громкого ба-баха и с большой долей вероятности ничего не сгорит. Такой подход несравнимо лучше всем известного включения схемы через лампочку накаливания. Единственное о чем стоит помнить – мощность лабораторного источника питания должна быть достаточной для организации питания исследуемой схемы.

5. Использовать розетку без заземления

Внимание! Данный способ относится к категории опасных, поэтому я не могу рекомендовать использовать его. Однако все-таки для полноты картины я должен про него рассказать, хотя бы для того, чтобы сообщить о возможных опасностях. Более того, бывает, что зачастую он оказывается единственным возможным способом посмотреть сигнал на стороне сетевого напряжения без привлечения какого-либо специального оборудования типа развязывающего трансформатора или осциллографа с изолированными каналами. Данный способ заключается в том, что осциллограф включается в розетку без клеммы заземления (см. рисунок ниже).

Таким образом разрушается контур протекания тока, однако это приводит к одной большой проблеме. Теперь земля осциллографа оказывается под смертельно опасным потенциалом. Это значит, что опасное для жизни напряжение будет присутствовать на всех BNC-разъемах осциллографа, на земляных хвостах всех подключенных щупов, а также, возможно, и на корпусах всех других приборов, включенных в ту же розетку (в случае, если в розетке все же есть контакты заземления, но к ней не подведен заземляющий провод). И если теперь одной рукой просто задеть коаксиальный разъем на корпусе осциллографа, а другой при этом, условно, схватиться за батарею… в общем, вы понимаете. Совершенно недопустимо использовать этот способ, если у вас осциллограф в металлическом корпусе. Если все-таки используете этот способ, то отключите все лишние щупы, а также другие провода (USB, RS-232 и др.), убедитесь, что в розетку включен только один осциллограф, выполните все подключения, настройте заранее все крутилки на осциллографе, убедитесь, что не заденете случайно BNC разъемы и только потом подавайте сетевое напряжение.

Тем не менее, при соблюдении всех мер предосторожностей, этот способ в целом рабочий. Под спойлером ниже приведена осциллограмма напряжения из розетки, снятая мной еще в студенческие годы как раз с использованием этого самого способа. Поскольку сетевое напряжение имеет размах, превышающий количество клеток на экране осицллографа, измерение происходило через резистивный делитель напряжения 1:5.

6. Использовать осциллограф с питанием от аккумуляторной батареи

Некоторые осциллографы могут работать от встроенных аккумуляторных батарей. Сетевой шнур при этом не подключается, соответственно, осциллограф оказывается не заземленным. По сути этот способ является полным аналогом предыдущего, только вместо розетки без заземления используется питание осциллографа от встроенной батареи. Этот способ абсолютно точно также опасен, как и предыдущий: на всех разъемах осциллографа будет присутствовать все тот же смертельно опасный потенциал, поэтому все меры безопасности, описанные в предыдущем пункте статьи, в равной степени справедливы и для этого способа.

7. Запитать управляющие микросхемы низким напряжением от лабораторного источника

Иногда бывают ситуации, когда для отладки не обязательно наличие высокого сетевого напряжения. В таком случае лучше просто запитать управляющие цепи с помощью низковольного лабораторного источника питания. Величина требуемого напряжения всегда прописана в документации на конкретные микросхемы (например, в случае исследования ШИМ-контроллера оно обычно не превышает 20 В). Сетевое напряжение 230 В при этом, само собой, не подается, поэтому можно абсолютно безопасно исследовать осциллографом импульсы на выходе контроллера, работу осциллятора, величину опорных напряжений и другие критические сигналы. Конечно, без наличия сетевого напряжения все проверить не получиться, но откровенно мертвый контроллер без проблем можно продиагностировать.

Общие рекомендации по работе с сетевым напряжением

1. При работе с сетевым напряжением всегда соблюдайте технику безопасности

Да, сто раз про это везде уже писали, но, тем не менее, почему-то часто то, как делать не надо, выясняется только на своей шкуре своем опыте. Не стоит лезть в приборы под напряжением во время работы, лучше выполните все подключения до включения питания. Не забывайте про накопительные конденсаторы: на их разряд нужно некоторое время, которое может стремиться к бесконечности (условно, конечно же), если разработчик не поставил разрядных резисторов.

2. Изучите инструкцию на ваш прибор

Конечно, жизнь слишком коротка, чтобы читать инструкции, поэтому их обычно открывают только когда что-то не работает или сломано. Но если вы работаете с сетевым напряжением, все-таки стоит заранее посмотреть, а какие, собственно, предельные цифры у вашего прибора. Небрежность в этом вопросе может стоить очень дорого.

3. Используйте недорогие приборы

Если вы исследуете сетевое напряжение, то отложите в сторону ваш крутой Tectronix DPO 7254 ценою в несколько миллионов и возьмите какой-нибудь Наntек DSO 5102 за пару десятков тысяч рублей. На стороне сетевого напряжения вам не нужны гигасемплы и крутая математика, зато если что-то пойдет не так, ошибка не будет стоить настолько дорого.

4. По возможности всегда работайте с гальванической развязкой от сети

Из-за несоблюдения этого правила в этом мире погорело уже куча электроники. В моей практике был случай, который стоил мне ноутбука и JTAG-отладчика. Я проводил отладку одного устройства и вроде бы ничего не предвещало беды. Устройство имело металлический корпус и на корпусе была установлена неоновая лампочка, которая светилась от сети 230 В. Корпус, естественно, был заземлен. Сама плата с микроконтроллером была запитана от отдельного изолированного источника питания. И в один прекрасный момент эта лампочка пробилась на корпус устройства. В этот момент к плате был подключен JTAG-отладчик, который был воткнут в ноутбук. Ноутбук же в свою очередь был включен в розетку с заземлением. Таким образом, ток пошел по цепочке «неоновая лампочка – корпус – плата – JTAG-отладчик – ноутбук – источник питания ноутбука – заземление». Разумеется, ноутбук и программатор при этом выгорели без возможности восстановления. Этого можно было бы избежать, если бы применялся JTAG-отладчик с гальванической развязкой. Ну и использовать топовый MacBook Pro в качестве рабочей машины при отладке силовой электроники, конечно же, тоже не стоит (см. предыдущий пункт).

Источник

Оцените статью