Диско стробоскоп своими руками

Как самостоятельно смастерить стробоскоп для дискотеки

Стробоскоп украшает любую вечеринку, добавляя ей энергии, особенно, если он сделан своими руками. Самостоятельно сделать стробоскоп способен даже новичок. При этом затраты можно свести к минимуму, путём замены импульсных ламп, которые настроены на недолгую работу по высокой цене, на более экономичные светодиодные.

Самодельный стробоскоп изготавливается путём совмещения платы со светодиодными лампами и платы с блоком управления. «Сердцем» блока является таймер для формирования циклических импульсов LM555. От работы таймера, которая регулируется резистором, зависит скорость сверкания стробоскопа.

На устройство можно монтировать любое количество ламп кратное трём.

Стробоскоп может работать от любого элемента от 6 до 12 вольт, будь то батарейка или блок питания, для которого нужно смастерить отдельный разъём. Чем выше напряжение блока питания, тем ярче свет на вечеринке.

Ещё для стробоскопа понадобится полевой транзистор IRFZ44N, четыре резистора с сопротивлением 5,6 Ом, 56 Ом, 10 кОм, 100 кОм, два конденсатора с ёмкостным показателем 1 и 100 мкФ, и рабочим напряжением 50 и 16 В, а также диод 1N4148.

Ещё для самодельного стробоскопа необходим корпус из пластика (90х60х25) с оргстеклом (90х60), текстолит для печатной платы, 8 шпилек (папа-папа) с резьбой М4 и длиной 10мм (4 штуки) и 22мм (4 штуки), гайки для шпилек с той же резьбой, что и шпильки и размером 8 мм, батарейка, гнездо для блока питания, переключатель с двумя положениями.

Схемы и платы необходимо зарисовать в программе Eagle. В итоге получится две маленьких платы с контроллером и светодиодами, которые позже необходимо спаять.

  • Принципиальная схема светодиодной платы (PDF, 62 Кб);
  • Печатная плата для светодиодов (PDF, 13 Кб);
  • Принципиальная схема управляющей платы (PDF, 48 Кб);
  • Печатная плата управляющая (PDF, 10 Кб);
  • Расположение элементов (PDF, 47 Кб).

После завершения пайки всех элементов на печатные платы, можно приступать к собиранию корпуса стробоскопа.

Для закрытия светодиодных ламп используется оргстекло, которое крепится при помощи шпилек длиной 10 мм, после чего все остальные детали нужно установить на место, закрыть корпус и наслаждаться световым сопровождением музыки.

Источник

Стробоскоп на мощных светодиодах

Человеческий организм — очень интересное, и одновременно ещё не до конца изученное творение природы. Многие люди утверждают, что инфразвук очень пагубно влияет на их самочувствие и здоровье. Есть целые статьи, посвящённые тому, как колебания воздуха на низких частотах влияют на мозг и могут буквально свести человека с ума. Верить в пагубное влияние инфразвука, или не верить — каждый решает сам, а вот с тем фактом, что резкие вспышки света с небольшой частотой в несколько герц могут полностью дезориентировать человека — факт. Ведь не зря же многие фонарики полицейских имеют функцию стробоскопа — такие вспышки, особенно когда вокруг темнота и зрачок глаза максимально расширен, могут полностью обезоружить человека. Конечно, стробоскоп в качестве средства самообороны — не самый лучший вариант, однако это не единственное его применение. Мощный стробоскоп может выступать в роли световой установки на дискотеках и концертах, создавая непередаваемую атмосферу. Также с помощью мощного стробоскопа можно наблюдать интересные оптические иллюзии — например, если освещать стробоскопом маятник, частота колебаний которого примерно равна частоте вспышек стробоскопа, то визуально частота колебаний маятника будет совершенно другой. Происходит это из-за этого, что человеческий глаз будет «видеть» маятник только в те моменты, когда он освещён вспышкой. Для того, чтобы стробоскоп был не просто детской моргалкой, а именно стробоскопом, для его построения нужно использовать мощные светодиодные матрицы, рассчитанные на напряжение 220В. Для того, чтобы заставить матрицы не просто светится, а мигать, необходимо собрать схему, представленную ниже.

В левой части схемы видны контакты, обозначенные как «220» — сюда будем подавать переменное напряжение прямо из розетки. Далее по схеме можно увидеть, что к сети 220В подключаются диодный мост (выпрямитель напряжения из переменного в постоянное) и импульсный блок питания, на выходе которого 12В постоянного напряжения. Блок питания нужен для питания логической части схемы, которая собрана на микросхеме-таймере NE555. Эта микросхема потребляет небольшой ток, а потому к импульсному блоку питания не предъявляется больших требований — напряжение в пределах 10-14В, максимальный ток должен быть как минимум 100 мА. Здесь можно использовать, например, вот такие миниатюрные импульсные блоки питания, они не отнимут много места в корпусе будущего стробоскопа. Как правило, они имеют два контакта для подключения к сети 220 и два контакта для вывода готовых 12В. Основное место в таких блоках питания занимают трансформатор и конденсаторы. Более простой, но несколько менее надёжный вариант — использовать блок питания на гасящем конденсаторе, рассчитанный на то же самое напряжение.

Читайте также:  Держатель для зубных щеток сделать своими руками

По схеме видно, что к сети 220В, параллельно с блоком питания подключается диодный мост, который служит для превращения переменного напряжения в постоянное. После диодного моста подключаются матрицы таким образом, что аноды (плюсы) матриц соединяются непосредственно с плюсовым выходом диодного моста, а катоды (минусы) матриц подключаются через полевой транзистор, который управляется от логической части. При этом минус диодного моста соединяется с минусом импульсного блока питания. На фотографии ниже показано фото диодного моста. Важно хорошо изолировать все электрические части схемы, ведь замыкание сети 220В может привести к печальным последствиям.

Здесь можно использовать любой готовый диодный мост на напряжение как минимум 500В и ток 1А, либо можно собрать диодный мост самому, в соответствии со схемой. Подойдут для этого распространённые диоды 1N4007, рассчитанные на максимальный ток в 1А и напряжение 1000В. Для стробоскопа можно использовать как всего одну матрицу, так и несколько, соединённых параллельно, в этом случае эффект стробоскопа значительно усиливается.

Вся конструкция монтируется в просторном прямоугольном корпусе, при этом три большие светодиодные матрицы располагаются снаружи. Важно хорошо заизолировать контакты, через которые подводится питание к матрицам, иначе будет легко получить удар током при использовании стробоскопа. В обычном режиме работы, когда матрицы светят непрерывно, они довольно сильно нагреваются и требуют радиаторов для охлаждения, но в режиме стробосокопа они питаются импульсами напряжения, а потому и нагреваться будут в несколько раз меньше и даже не требуют радиатора. Допустим нагрев при длительной работе до 40-50°C без вреда для самих светодиодов. Также наружу корпуса выводится переменный резистор R3, который служит для регулировки частоты мерцаний стробоскопа. Здесь можно использовать любой потенциометр сопротивлением 1 МОм, характеристика линейная. На его ручки для красоты и удобства надевается пластиковая ручка. Сама схема генерации импульсов собирается на макетной плате и располагается внутри корпуса, вместе с диодным мостом и миниатюрным блоком питания. Сетевой шнур выводится из корпуса, при желании можно установить выключатель питания и установить разъём. Также не лишним в такой конструкции будет плавкий предохранитель в цепи 220В.

Источник

Стробоскоп своими руками на 10 эффектов

Представляю автомобильный стробоскоп, хотя его можно не только на автомобиле применять, но и на мотоцикле, велосипеде, в общем везде, где пожелает душа и позволит фантазия. Представлено 2 варианта исполнения: более дешевый на биполярных транзисторах и более дорогой, но мощный вариант на полевых транзисторах. Главное различие, как указано, это допустимая мощность нагрузки. В первом случае у нас будет около 10 Вт допустимой нагрузки на канал, во втором 45 Вт и более (больше 45 Вт на канал не нагружал для проверки, но при такой нагрузке теплового нагрева ключевых элементов не было совсем).

Итак 2 схемы устройства:

Первая на полевых транзисторах:

И вторая на биполярных транзисторах:

Конструкция представляет собой микроконтроллер, управляющий силовыми ключами. Микроконтроллер можно использовать как в DIP корпусе, таки в SMD, однако на печатной плате предусмотрена установка только для SMD корпуса микроконтроллера. 1024 байта памяти микроконтроллера использованы полностью, поэтому количество эффектов ограничено 10, а жаль. В качестве силовых ключей можно использовать в первом варианте любые n-канальные полевые транзисторы с логическим управлением. Что это значит? У таких полевых транзисторов открывающие напряжения связаны с логическими уровнями, т.е. им достаточно на затвор подать 5 В, чтобы канал надежно открылся (пример выбора транзистора IRFZ44 и IRLZ44n: в данном случае IRLZ44n является полевым транзистором с логическим управлением, на что указывает буква l в названии, это то, что нам нужно для замены, IRFZ44 тоже подойдет, но будет чуть-чуть хуже, т.к. ему требуется подать большее напряжение для полного открытия, хотя работать тоже будет, просто сопротивление канала будет больше значения из даташита, а это значит, при бОльших токах больше будет греться). Чтобы ограничить ток заряда затвора, ставим ограничивающие резисторы R2, R3, чтобы не рисковать выбить вывод микроконтроллера. Резисторы R4, R5 необходимы, чтобы при отсутствии логической единицы прижимать затвор полевого транзистора к земле для надежного закрытия. Кнопку можно использовать абсолютно любую. На печатной плате кнопка дублируется двумя штырьками для возможности использования выносной внешней кнопки. Биполярные транзисторы можно использовать любый N-P-N структуры с запасом по мощности. Резистор R1 необходим для предотвращения сбоев работы микроконтроллера. Если не использовать этот резистор, на выводе reset могут появляться случайные помехи, из-за которых МК может презапускаться. Стабилизатор напряжения можно использовать любой на 5 В линейный (7805 или КР142ЕН5А) или заменить на импульсный преобразователь напряжения, при этом придется изменить немного и печатную плату (например MC34063 или LM2576 (LM2596)).

Читайте также:  Игрушки для детей своими руками сделай сам

Чтобы прошить микроконтроллер, необходимо либо использовать отдельную планку для прошивки перед запаеванием на печатную плату, либо временно подпаяться к контактам на печатной плате стробоскопа. Программатор можно использовать любой, поддерживающий ISP программирование (например, USBasp или USBtiny). После прошивки устройство не требует никаких настроек или калибровок, работает сразу. Для прошивки необходимо установить fuse биты, новичкам советую использовать шестнадцатиричную форму (HIGH, LOW), чтобы не напортачить с галочками:

  • 10 режимов: 1) горит 1 канал, 2) горит 2 канал, 3) горят оба канала (режим для ДХО), 4) моргают оба канала, 5) моргание 1 + 1, 6) 3 + 3, 7) 5 — пауза — 5, 8 ) короткое моргание обоих каналов, 9) бегущий огонь 2 канала в обе стороны, 10) быстрое непрерывное моргание каналов, 11) ничего не горит
  • сохранение последнего использовавшегося режима перед выключением питания
  • защита кнопки от дребезга и случайного и короткого нажатия (нужно удерживать кнопку примерно 0,85 секунды и смена эффекта происходит только после отпускания кнопки)
  • напряжение питания 7,5 — 15 В
  • малый размер печатной платы — примерно 3 х 3 см для варианта на биполярных транзисторах и 3 х 4 см для варианта на полевых
  • простая и функциональная конструкция
  • управление одной кнопкой

Сохранение последнего использовавшегося реализовано путем сохранения переменной, отвечающей за номер эффекта, в энергонезависимую память EEPROM микроконтроллера при выборе нужного эффекта. При подачи напряжения одним из первых дел считывается память EEPROM и определяется последнее состояние переменной:

Внешний вид готового устройства:

Конструкция и прошивка проверены в работе: багов и лагов не замечено. Любители китайской продукции в данном случае курят в сторонке, т.к. сравнительная стоимость данного устройства будет меньше и, что самое главное, более функциональная по сравнению с аналогами. Собрать такую схему у среднего радиолюбителя получится быстрее, чем сходить в магазин за китайским аналогом

К статье прилагаются файлы печатной платы, HEX файл прошивки микроконтроллера и проект Proteus, а также видео работы стробоскопа.

Источник

Схема и инструкция по сборке стробоскопа на светодиодах своими руками

Устройство, воспроизводящее непрерывный световой поток в импульсном молниеподобном режиме, применяется в различных областях – от индикации системы зажигания до подсветки дискотек и сигнальных устройств спецавтомобилей.

Рассмотрим, как своими руками сделать стробоскоп на светодиодах, как выглядит его схема и печатная плата, какие необходимые инструменты и компоненты для этого понадобятся, из каких этапов состоит сборка электроники, а также какие другие дополнительные процедуры понадобятся для приведения устройства в работоспособное состояние.

Необходимые инструменты

Для изготовления стробоскопа на базе светодиодов своими руками понадобится следующий набор инструментов и приспособлений:

  1. Измерительное устройство.
  2. Набор отверток.
  3. Плоскогубцы.
  4. Паяльная станция или паяльник с необходимыми компонентами.
  5. Дрель или шуруповерт.
  6. Нож по дереву.
  7. Фломастер.
  8. Наждачка.

Важно! При внедрении в схему стробоскопа очень мощных светодиодов возникающие вспышки света могут негативно сказаться на зрении. Поэтому в ходе работы устройства нужно исключить прямой зрительный контакт с подобным светоисточником, например, установив матовый рассеиватель.

Схема и печатная плата

Сделать стробоскоп на светодиодах можно по нескольким схемам. Одной из самых простых и доступных является следующая:

Читайте также:  Водосток своими руками металлпрофиль

В основе такой схемы используется таймер типа таймер LM555, либо его зарубежный аналог NE555. Он производит импульсы, параметры которых определяются потенциометром или резистором. Особенностью данной модели является то, что плата может включать и 3, и 10 и любое другое количество диодов. Главное преимущество такой схемы – стабильность импульсов и независимость их от потенциала АКБ.

Необходимые компоненты

К выше рассмотренной схеме стробоскопа на светодиодах понадобятся следующие основные компоненты с соответствующими характеристиками:

C1 1uF 50V
C2 1000uF 16V
D1 1N4148
IC1 LM555N
Q1 IRFZ44N
R1 100k
R2 10k
R3 56
R4 5,6 2W
RV1 1M (variable resistor or potentiometer)
LED1-LED60 5mm white water clear ultra bright LED

Для сборки схемы потребуется корпус. Можно использовать пластиковую или металлическую основу. Его размеры должны соответствовать пространственному расположению светодиодов, платы и электронной начинки в стробоскопе. Например, для 60-диодной модели его размеры будут около 100х70х30 мм.

Для того чтобы закрыть диоды сверху, понадобится фрагмент оргстекла или другого светопропускающего или матового материала, аналогичный по ширине и длине. Также потребуются винты на восемь М3, пара небольших винтов для фиксации выключателя, стальные держатели (отрезков трубки) размером – 5х22 и 5х10.

Еще потребуется холдер от элемента питания на девять вольт, отрезок проводника, разъем для подключения питания постоянного тока, выключатель и регулятор резистора для переменного тока.

Совет! Обязательными элементами схемы светодиодного стробоскопа являются резисторы. Измерить их основной рабочий параметр – сопротивление – можно мультиметром, а также определить по цветовой маркировке в таблице или вычислить на специальном онлайн-калькуляторе.

Сборка электроники

Сборка схемы стробоскопа осуществляется точно в соответствии с рассмотренной выше схемой. Лед-элементы спаиваются по принципу – катод к аноду соседнего и т. д. Крайние контакты припаиваются к проводникам с коннектором. Выключатель соединяется с холдером для элемента питания. Это позволит работать лампам прибора даже если он будет выключен – при воткнутом в разъем DC-адаптере, как показано на рисунке.

При выборе мощных светодиодов неизбежным результатом их работы будет производство тепла. Металлический корпус может послужить в этом случае в качестве радиатора.

Подготовка корпуса

Когда светодиоды, транзистор и прочие электронные компоненты собраны в одну схему, необходимо подготовить корпус будущего стробоскопа. Прежде всего нужно сделать крепежные отверстия и разъемы:

  1. Для закрепления рассеивателя, платы и корпуса проделываются трехмиллиметровые отверстия для установки держателей и закручивания винтов.
  2. Между платой для светодиодов и пластиковой пластиной устанавливаются держатели на 10 мм, а для скрепления всех деталей – на 22 мм.

Завершение работ

Когда вся схема стробоскопа на светодиодах собрана, его можно подключить к питанию и проверить на работоспособность. Рассмотренный пример позволяет использовать различные источники питания:

  1. Блок питания от 6 до 12 вольт – создает разный уровень свечения и яркость в зависимости от требуемой задачи в разных помещениях.
  2. Элемент питания на 9 вольт. Помешается непосредственно внутри корпуса и дает возможность использовать стробоскоп в автономном режиме вне помещения.

При использовании качественных фирменных компонентов стробоскоп будет работать достаточно долго и не потребует ремонта в ближайшие десятилетия.

Рекомендация! Чтобы стробоскоп излучал различными цветами, вместо обычных светодиодов в схему нужно внедрить RGB-элементы с контроллером. Как вариант, можно наклеить цветную пленку на рассеиватель.

Основные выводы

Чтобы изготовить своими руками стробоскоп на базе одноцветных или RGB светодиодов, необходимы следующие инструменты и компоненты:

  1. Линейка, отвертки, плоскогубцы, наждачка.
  2. Дрель или шуруповерт, винты, держатели.
  3. Паяльник с набором принадлежностей.
  4. Корпус, светодиоды, электронные компоненты, провода, оргстекло.

Собранная схема стробоскопа на простых светодиодах может работать от батареи в девять вольт, размещаемой в его корпусе, и от сетевого блока питания номиналом от 6 до 12 вольт, выдавая разную яркость светового потока.

Если вы знаете другую, простую или сложную схему стробоскопа на светодиодах для конкретной области применения, обязательно поделить этой информацией в комментариях.

Источник

Оцените статью