Доп реальность своими руками

Содержание
  1. Дополненная реальность / Создание простого AR приложения
  2. AR программа
  3. Разработка приложения
  4. Технология Vuforia
  5. Создание программы
  6. Расположение объектов
  7. Компиляция проекта
  8. Видеоурок по AR
  9. Дополнительный курс
  10. ARVIS
  11. Превращайте
  12. обычные картинки
  13. в мультимедиа каналы
  14. Объединяйте
  15. онлайн и офлайн
  16. в один яркий канал
  17. Создание дополненной
  18. реальности самостоятельно
  19. за пару кликов
  20. Дополненная реальность – волшебство!
  21. Как работает
  22. Загрузи
  23. Добавь
  24. Смотри
  25. Проверь прямо сейчас
  26. Возможности
  27. Специальная возможность
  28. КОМБО-AR
  29. Новости
  30. Новости
  31. От создателей
  32. Как создать дополненную реальность, написав 12 строк кода
  33. Как создать дополненную реальность, написав 12 строк кода
  34. Как создать AR-приложение за несколько минут
  35. Как создать свой маркер для AR-объекта
  36. Что ещё можно сделать с помощью AR.js
  37. AR — Дополненная Реальность (статья плюс ролик)
  38. Что такое ЭйАр
  39. История ЭйАр
  40. Как работает дополненная реальность
  41. Настоящее: от очков к телефонам
  42. Развлечения
  43. От развлечений к реальной жизни
  44. Образование
  45. Медицина
  46. Военные технологии
  47. Будущее
  48. Ролик

Дополненная реальность / Создание простого AR приложения

Благодаря совместным стараниям многих крутых компаний технология дополненной реальности плотно вошла в нашу жизнь и сегодня простым AR приложением никого не удивить.

Несмотря на столь большое распространение для многих данная тема до сих пор является очень страшной и непонятной.

AR программа

Итак, наша программа будет достаточно простой. Мы будем наводить смартфон на некую ровную поверхность и далее на ней будет появляться объект. Данным объектом можно будет управлять за счет пользовательского интерфейса в приложении.

Разработка приложения

Первое что нужно сделать, так это скачать Unity. Заходим на официальный сайт , нажимаем на «Get Started» и скачиваем Unity версии «Personal». Как ни странно, вместо Unity у нас скачается Unity Hub, через который вы как раз и можете установить саму программу Unity. Здесь главное не забудьте указать поддержку Android и iOS устройств, чтобы будущее приложение можно было скомпилировать под эти платформы.

Далее через тот же Unity Hub создаем новый проект, при чём название, расположение, а также формат проекта — это всё нам не особо важно.

Технология Vuforia

После создания проекта нам необходимо подключить в него технологию Vuforia.

Не знаете что такое Vuforia? Vuforia — это отдельная библиотека, которая обеспечивает полную работу с дополненной реальностью. Чтобы её установить необходимо в Unity зайти в Window -> Package Manager. В нём прописываем Vuforia и нажимаем на Install.

Создание программы

Следующий этап, удаляем основную камеру на сцене и вместо неё добавляем AR камеру. Такая камера идет от библиотеки Vuforia и она позволяет обрабатывать различные поверхности для расположения на них объектов.

Чтобы всё работало нужно в AR камере нажать на «Open Vuforia configuration» и далее в поле «Add licence key» нужно установить ключ.

Его можно получить на официальном сайте Vuforia . На сайте сперва регистрируемся. Далее в кабинете пользователя нажимаем на «Get Development Key», придумываем название для программы, можно любое, ставим галочку внизу и нажимаем «Confirm». Создается новое приложение, в котором как раз и есть нужный ключ. Копируем его и вставляем в Unity.

Теперь добавим на сцену объекты «Plane Finder», а также «Ground Plane Stage». За счёт «Plane Finder» Vuforia сможет определить ровную поверхность, а за счёт «Ground Plane Stage» она сможет расположить на этой поверхности различные объекты.

Также не забудьте перенести ссылку на объект «Ground Plane Stage» в объект «Plane Finder». Это нужно чтобы «Plane Finder» понимал с чем требуется работать.

Расположение объектов

Зайдите в Asset Store , это официальный магазин Unity, и в нём найдите какую-либо модель, которую мы будем располагать в AR приложении. Скачиваем модель и импортируем в Unity.

Далее выбираем объект и перетаскиваем внутрь «Ground Plane Stage». Уменьшаем размеры если необходимо, а также отодвигаем камеру, чтобы объекты не находились в одном месте.

Компиляция проекта

Теперь всё готово и остается лишь скомпилировать проект и запустить на устройстве. Для этого заходим в Build Settings, добавляем открытую сцену, а также выполняем перекомпиляцию проекта под iOS или Андроид в зависимости от того какое устройство у вас есть под рукой.

Далее заходим в Player Settings и прописываем некоторые основные настройки. К примеру: название игры, идентификатор, иконки для приложения, если хотите и по сути на этом всё. Кстати, если компилируете под Андроид, то там ещё не забудьте подключить SDK к Unity, а также не забудьте создать ключ приложения всё в тех же Player Settings.

Перед компиляцией обязательно установите XR плагин. Именно он контролирует большинство вещей в вашем приложении с дополненной реальностью. Без него ничего работать не будет.

После компиляции вы можете загрузить приложение на ваш смартфон и протестировать его работу.

Видеоурок по AR

Для более детального ознакомления предлагаем просмотреть небольшой урок на эту тему:

Дополнительный курс

На нашем сайте также есть углубленный курс по изучению игрового движка Unity . В ходе огромной программы вы изучите не только движок Unity, но также научитесь писать консольные и интерфейсные программы на языке C#. Также вы изучите сам движок Unity, включая создание 2D и 3D игр, а также игр и приложений с дополненной реальностью.

Источник

ARVIS

Конструктор дополненной реальности

Превращайте

обычные картинки

в мультимедиа каналы

Объединяйте

онлайн и офлайн

в один яркий канал

Создание дополненной

реальности самостоятельно

за пару кликов

Быстро и просто с ARVIS

Дополненная реальность – волшебство!

Используя одно изображение, вы можете вызывать яркие эмоции,

предоставлять разнообразие информации и организовать мгновенные

коммуникации. C конструктором ARVIS каждый может стать волшебником

Как работает

Смотри как разработать дополненную реальность самостоятельно

и оживи картинку своими руками за 3 минуты

Загрузи

в конструктор изображение (картинку, фото, маркер)

Добавь

изображению нужный контент (видео, аудио, текст, PDF, GIF, слайд-шоу, интерактивные кнопки)

Смотри

через приложение ARVIS

Проверь прямо сейчас

Сканируйте QR-код и наше скачивайте бесплатное

приложение ARVIS в App Store и Google Play

Откройте приложение ARVIS и смотрите на купюры 100, 500 и 5 000 рублей

Возможности

В нашем конструкторе доступны к размещению в AR-объекте

следующие виды контента

Хотите ЕЩЁ БОЛЬШЕ возможностей?

+7 962 587 20 60

Или заполните форму и мы свяжемся с Вами:

Специальная возможность

КОМБО-AR

Размещайте на одной картинке сразу несколько видов контента,

например: видео, текст, PDF и интерактивные кнопки.

Сделать AR бесплатно

Новости

Новости

От создателей

Больше 40 000 лет люди передавали информацию с помощью изображений и использовали для этого только графику, цвет и сюжет.

В XXI веке дополненная реальность дала людям возможность превращать привычные изображения в мультимедиа каналы с возможностью мнгновенной и разнообразной коммуникации.

А мы хотим сделать дополненную реальность полезной и доступной всем!

WhatsApp / Viber / Telegram: +7 962 587 20 60

Резидент Технопарка Якутия

Резидент Технопарка Русский

Open innovations startup tour

WhatsApp / Viber / Telegram: +7 910 875 05 20

2021 © ARVIS. ВСЕ ПРАВА ЗАЩИЩЕНЫ

WhatsApp / Viber / Telegram: +7 910 875 05 20

Источник

Как создать дополненную реальность, написав 12 строк кода

Как создать дополненную реальность, написав 12 строк кода

AR.js — библиотека для создания дополненной реальности. Она объединена с фреймворком A-Frame, который предназначен для разработки VR в вебе. Главный плюс AR.js — очень простой процесс создания AR-приложений. Достаточно импортировать библиотеку и добавить объекты, которые будет видеть пользователь при выполнении заданных условий — например, наведении камеры на маркер или нахождении в указанном месте.

Все ссылки на документацию будут в конце статьи, а пока посмотрим самое интересное — как это работает на практике. Результат будет примерно такой:

Слева — метка, справа — AR-объект, который появляется при наведении камеры / Источник: medium.com/@jerome_etienne

Важно: чтобы посмотреть примеры AR-контента, нужно второе устройство с камерой — например, смартфон. В тексте есть ссылки на CodePen. Откройте их на устройстве с камерой и разрешите браузеру доступ.

Как создать AR-приложение за несколько минут

Импортируем в HTML-код A-Frame и AR.js:

Затем внутри создадим сцену, которая будет охватывать все необходимые нам элементы: маркер, камеру, AR-объект.

Следующий шаг — добавление маркера. Пока используем preset Hiro. Это дефолтный маркер AR.js, его изображение вы найдёте ниже:

Напоследок добавляем камеру. Одна должна быть за пределами маркера. Это нужно для того, чтобы AR-объект появлялся только при наведении камеры на маркер. Если в объективе нет маркера, дополнительный контент не отображается на экране.

Читайте также:  Вулканит своими руками чертежи

Чтобы проверить работоспособность:

  1. Откройте в браузере на смартфоне это приложение на CodePen.
  2. Разрешите доступ к камере.
  3. Наведите камеру на маркер Hiro, который размещён ниже.

Наводим камеру — появляется объект дополненной реальности. Убираем камеру — объект исчезает.

Вместо геометрической фигуры можно вставить другую 3D-модель. Рекомендуемый формат — glTF. Например, в этом пене при наведении камеры на маркер на экране отобразится модель города. Вот полный код:

Дополненная реальность работает в браузере

Ещё одна интересная возможность — вставка AR-текста на английском языке. Его свойствами можно управлять с помощью атрибутов, подробно описанных в документации. Чтобы посмотреть пример, откройте на смартфоне ссылку на этот пен и наведите камеру на маркер Hiro. А вот его полный код:

Как создать свой маркер для AR-объекта

В примерах выше используется стандартный маркер Hiro. Но мы можем создать другое изображение с помощью онлайн-инструмента AR.js Marker Training. Правда, оно должно отвечать целому ряду требований.

  • максимальное разрешение маркера — 16*16 пикселей;
  • квадратная форма;
  • используется только чёрный или светло-серый цвет (например, #F0F0F0);
  • нет прозрачных областей;
  • содержит простой текст — букву или цифру.

Также нужно помнить о контрасте. Если у маркера чёрный фон, то окружающая среда должна быть светлой. В противном случае распознавание не сработает.

В качестве маркера также можно использовать штрих-код. Подробнее об этом можно узнать из статьи разработчика AR.js Николо Карпиньоли (Nicolo Carpignoli).

Что ещё можно сделать с помощью AR.js

Отслеживание маркеров — лишь один из типов дополненной реальности. Библиотеку можно также использовать для создания следующих интерактивов:

  • Отслеживание изображений — при наведении камеры на 2D-изображение пользователь видит поверх него или рядом с ним AR-контент. Это может быть другое 2D-изображение, GIF, 3D-модель, видео.
  • Дополненная реальность на основе местоположения. Пользователь видит AR-контент в заданных локациях.

Подробное описание применения и примеры кода можно найти в документации AR.js и A-Frame.

Хинт для программистов: если зарегистрируетесь на соревнования Huawei Cup, то бесплатно получите доступ к онлайн-школе для участников. Можно прокачаться по разным навыкам и выиграть призы в самом соревновании.

Перейти к регистрации

Источник

AR — Дополненная Реальность (статья плюс ролик)

По-настоящему широкая публика столкнулась с ней, когда Гугл захотел повесить нам на нос свои умные очки. После пришла эпоха смешных масок, которые делали из нас котиков, зайчиков и Леонардо Ди Каприо. Затем покемоны захватили обе реальности и заставили наматывать километры. А недавно Эппл показала ARKit, а Гугл — ARCore, и значит нас вот-вот накроет новая волна игр и приложений с применением дополненной реальности, возможности которой гораздо шире и полезнее для общества, чем ловля слоупоков.

Это популяризаторская статья. В ней нет подробного описания технической стороны, зато есть история развития ЭйАр, ссылки на упоминающиеся разработки и множество интересных иллюстраций.

Что такое ЭйАр

Дополненная реальность — это среда, в реальном времени дополняющая физический мир, каким мы его видим, цифровыми данными с помощью каких-либо устройств — планшетов, смартфонов или других, и программной части. Например, Google Glass или шлем Железного Человека. Системы прицеливания в современных боевых самолетах — это тоже дополненная реальность.

Дополненную реальность (augmented reality, AR) надо отличать от виртуальной (virtual reality, VR) и смешанной (mixed reality, MR).

В дополненной реальности виртуальные объекты проецируются на реальное окружение.

Виртуальная реальность — это созданный техническими средствами мир, передаваемый человеку через (пока что) органы чувств.

Смешанная или гибридная реальность объединяет оба подхода.

То есть, виртуальная реальность создает свой мир, куда может погрузиться человек, а дополненная добавляет виртуальные элементы в мир реальный. Выходит, что ВиАр взаимодействует лишь с пользователями, а ЭйАр — со всем внешним миром.

История ЭйАр

Как многие другие интересные исследования, история манипуляций с реальностью начинается в научной фантастике. Автор «Волшебника страны Оз» Лайман Фрэнк Баум в романе «Главный ключ» описал некое устройство, способное помечать в режиме реального времени людей буквами, указывающими на их характер и уровень интеллекта. Примитивные инструменты дополнения реальности были известны задолго до того: это и маски, которые надевали римские лучники, чтобы лучше целиться, и подзорные трубы с нанесенными метками расстояний и так далее.

Но история дополненной реальности, какой мы ее знаем сейчас, берет начало из разработок, касающихся ВиАр. Отцом виртуальной реальности считается Мортон Хейлиг. Он получил это звание за исследования и изобретения, сделанные в 1950-х и 60-х годах. 28 августа 1962 года он запатентовал симулятор Sensorama. Сам Хейлиг еще называл его театром погружения.

Патент описывает виртуальную технологию, в которой визуальные образы дополняются движениями воздуха и вибрацией. Обоснование ее существования давалось такое:

«Сегодня постоянно растет спрос на методы обучения и тренировки людей таким способом, чтобы исключить риски и опасность реальных ситуаций»

Это было устройство ранней версии виртуальной реальности, а не дополненной, но именно оно дало толчок к развитию обоих направлений. Хейлиг даже изобрел специальную 3Д-камеру, чтобы снимать фильмы для Сенсорамы.

А вот в 1968-м году компьютерный специалист и профессор Гарварда Айван Сазерленд со своим студентом Бобом Спрауллом разработали устройство, получившее название «Дамоклов Меч». И это была первая система уже именно дополненной реальности на основе головного дисплея.

Очки были настолько тяжелыми, что их пришлось крепить к потолку. Конструкция угрожающе нависала над испытуемым, отсюда и название. В очки со стереоскопическим дисплеем транслировалась простая картинка с компьютера. Перспектива наблюдения за объектами менялась в зависимости от движений головы пользователя, поэтому понадобился механизм, позволяющий отслеживать направление взгляда. Для того времени это был фантастический прорыв.

Следующим шагом было создание Майроном Крюгером лаборатории с искусственной реальностью Videoplace в 1974-м году.

Его основной целью было избавить пользователей от необходимости надевать специальные шлемы, очки и прочие приспособления для взаимодействия с искусственной реальностью. В Видеоплейсе использовались проекторы, видеокамеры и другое оборудование. Люди, находясь в разных комнатах, могли взаимодействовать друг с другом. Их движения записывались на видео, анализировались и переводились в силуэты искусственной реальности. Пользователи видели, как их силуэты взаимодействуют с объектами на экране и это создавало впечатление, что они часть искусственной реальности. Хотя правильнее было бы назвать это проектом интерактивного окружения.

Спустя четыре года, в 1978-м, Стив Манн придумал первое приспособление для ЭйАр, которое не было прикручено к потолку. В EyeTap использовалась камера и дисплей, дополняющий среду в режиме реального времени. Это изобретение стало основой для будущих проектов, но массово не использовалось.

Первое массовое использование дополненной реальности стало возможно благодаря Дену Рейтону, который в 1982-м году использовал радар и камеры в космосе для того, чтобы показать движение воздушных масс, циклонов и ветров в телепрогнозах погоды. Там ЭйАр до сих пор используется таким образом.

В 90-е поиск новых способов использования продолжился, а ученый Том Коделл впервые предложил термин «дополненная реальность». Перед ним и его коллегой поставили задачу: снизить затраты на дорогие диаграммы, которые использовали для разметки заводских зон по сборке самолетов Боинг. И решением стала замена фанерных знаков с обозначениями на специальные шлемы, которые отображали информацию для инженеров. Это позволило не переписывать обозначения каждый раз вручную, а просто изменять их в компьютерной программе.

Дальше развитие происходило стремительно. Скачок, сделанный в производстве микропроцессоров, и, как следствие, во всем технологическим секторе, позволил сильно ускорить работы.

В 1993-м году в университете штата Колумбия Стив Файнер представил систему KARMA (Knowledge-based Augmented Reality for Maintenance Assistance, переводится примерно как «Интерактивный помощник по обслуживанию»), позволявшую через шлем виртуальной реальности увидеть интерактивную инструкцию по обслуживанию принтера.

А вот в 95-м Джун Рекимото собрал Navicam — прототип мобильного устройства дополненной реальности, какой ее сейчас знают пользователи смартфонов. Навикам представлял собой переносной дисплей с закрепленной на обратной стороне камерой, чей видеопоток обрабатывался компьютером и, при обнаружении цветной метки, выводил на экран информацию об объекте.

В 96-м году Джуном Рекимото и Южди Аятцука был разработан Матричный Метод (или КиберКод). Он описывает реальные и виртуальные объекты с помощью плоских меток наподобие QR-кодов. Это позволяло вписывать виртуальные вещи в реальный мир, просто перенося метки. Например, положить на пол листок с кодом, навестись на комнату камерой — и вот у вас в комнате стоит динозавр.

Читайте также:  Как сделать каттеры своими руками

В 98-м году НФЛ впервые использовала дополненную реальность, разработанную компанией Sport Vision, в прямой трансляции спортивных игр. Во время матчей на картинку с камеры, обзорно показывающей игровое поле, добавлялись технические линии и информация о счете. О «волшебной желтой линии» есть старый сюжет.

В 99-м НАСА применила систему дополненной реальности в приборной панели космического аппарата Икс-38, который научился отображать объекты на земле вне зависимости от погодных условий и реальной видимости.

И в том же году Хироказу Като создал открытую библиотеку для написания приложений с ЭйАр-функционалом ARToolKit (еще на Гитхабе). В ней использовалась система распознавания положения и ориентации камеры в реальном времени. Это позволяло стыковать картинку реальной и виртуальной камер, что давало возможность ровно накладывать слой компьютерной графики на маркеры реального мира.

Можно сказать, что с релизом первой версии этой библиотеки начался современный этап активного развития дополненной реальности.

Как работает дополненная реальность

Если откинуть совсем уж древние реализации, то ЭйАр — это распознавание образов и отслеживание маркеров.

С распознаванием образов все более-менее понятно. Если приложение должно распознавать стол, то достаточно загрузить на сервер библиотеку фотографий столов, обозначить общую структуру, цвет, произвольные параметры и присвоить этому набору данных определенное действие при обнаружении на картинке.

Вторая часть — это отслеживание маркеров. Маркерами могут выступать как специально напечатанные изображения, так и любые объекты.

Обложку журнала приложение распозна́ет по простой форме с прямыми углами и конкретному рисунку, и будет отслеживать ее положение в пространстве, отмечая смещение относительно фона. В этом случае сама обложка и есть маркер.

Со специальными маркерами все обстоит еще проще. Допустим, мы хотим примерить автомобилю новые диски. Для этого нам достаточно наклеить на диски QR-метки и система автоматически поймет, что именно в этих местах следует вставлять в картинку изображение новых колес. Еще один пример: мы кладем метку на пол и приложение понимает, что эта плоскость и есть пол, и разместит на нем произвольные объекты.

Но маркеры везде не налепишь, а сделать уникальный маркер под каждую ситуацию и унифицировать всю систему слишком сложно.

Здесь на выручку приходит SLAM — метод Одновременной Локализации и Построения Карты, используемый для построения карты в неизвестном пространстве с одновременным контролем текущего местоположения и пройденного пути.

Звучит сложно. В упрощённом виде, Слэм — это способ распознавания окружения и местоположения камеры, путем разложения картинки на геометрические объекты и линии. После чего каждой отдельной форме система присваивает точку (или много-много точек), фиксируя их расположение в пространственных координатах на последовательных кадрах видеопотока. Таким образом, условное здание раскладывается на плоскости стен, окна, грани и прочие выделяющиеся элементы. А условная комната — на плоскости (пол, потолок, стены) и объекты внутри. Благодаря тому, что алгоритм позволяет запоминать положение точек в пространстве, вернувшись в эту же комнату из другой вы увидите точки на тех же местах, где они и находились ранее.

Особенно сильный толчок этот метод получил после того как производители смартфонов начали встраивать дополнительные камеры для расчета глубины резкости в свои аппараты.

Не стоит думать, что Слэм — это продвинутая версия обычного распознавания образов и отслеживания маркеров. Скорее, это инструмент, который намного лучше подходит для ориентации систем дополненной реальности в пространстве. Он дает приложению понять, где находится пользователь. Но намного хуже подходит для опознания, например, медведя на картинке.

Для максимальной эффективности оба подхода объединяют для конкретной задачи. Что приводит нас к современной ситуации.

Настоящее: от очков к телефонам

В самом начале развития ЭйАр было понятно, что ее успех будет зависеть от того, насколько удобно будет нашим глазам.

Еще в 1984-м году в фильме «Терминатор» Джеймса Кэмерона была визуализирована концепция дополненной реальности и компьютерного зрения. Но Кэмерон сильно опередил время, т.к. встроить ЭйАр прямо в глаз в те годы не представлялось возможным даже в смелых фантазиях. Идеалом виделись форм-факторы контактных линз или очков. Первое и сейчас лишь на стадии концептов, а вот по мере удешевления и появления более тонких производственных процессов форма очков становилась все ближе. С годами к ней окончательно прилип и второй вариант реализации: с помощью ставших вездесущими смартфонов.

Самым громким событием дополненной реальности последних лет стали вышедшие в 2013-м году очки Google Glass, с которыми есть небольшая путаница. Несмотря на то, что именно они многим первыми приходят на ум, когда речь заходит о дополненной реальности, к таковой эти очки отношения почти не имели. Виртуальная среда практически не взаимодействовала с реальной. Разве что навигацию можно причислить к ЭйАр-контенту, но и она была реализована в стиле карт для телефона, а не каких-нибудь висящих над дорогой стрелок.

Зато очки умели делать фото и снимать видео по команде, с автоматической отправкой в облако. Этот не ставший массовым эксперимент все же сделал свое дело: запустил волну, дав понять другим компаниям, что можно всерьез приниматься за разработку устройств дополненной реальности для масс.

Эстафету тут же приняла Майкрософт, через пару лет завуалированно анонсировавшая (а в 2016-м и представившая) очки смешанной реальности Hololens. Правда, только для разработчиков и журналистов. Продукт сложный, его до сих пор разрабатывают. Но в интернете много восторженных обзоров, где люди делятся своим опытом взаимодействия с виртуальной средой.

Хололенс не требуют подключения к другому ПК или телефону. У очков четыре камеры, с помощью которых они анализируют комнату и совмещают виртуальные объекты с реальным миром.

Очки позволяют практически полноценно работать с Windows 10, причем, название «Виндоус» обретает новый смысл: окна системы легко вешаются на стены на манер, собственно, окон. Очки запоминают помещение, поэтому, когда пользователь возвращается в ту же самую комнату, все окна приложений и прочие элементы смешанной реальности ждут его на своих местах.

Сейчас существует около десятка наиболее перспективных разработчиков и продуктов для дополненной реальности в форм-факторе очков: Vuzix, Sony, ODG, Solos.

Но один производитель подобрался наиболее близко к тому, что может быть не только технологично, но и удобно. Это — компания Magic Leap.

Запустившись в 2010-м году в атмосфере абсолютной секретности, она уже через пару лет собрала инвестиций более чем на полмилллиарда долларов от таких гигантов как Гугл и Куалком. Никто за пределами узкого круга инвесторов не знал, чем эта компания привлекла такое внимание и что у нее за продукт.

Но информация все-таки просочилась. А позднее было официально объявлено: компания работает над продвинутой версией очков дополненной реальности, которые на голову сильнее Гугл Гласс и Хололенс. И, в отличие от других производителей, в Мэджик Лип равное внимание уделяют как железу, так и ПО и интерфейсам. Несмотря на то, что компанию больше интересует индустрия развлечений, чем прикладное применение, на сегодняшний день она является лидером в удобстве пользовательских интерфейсов.

Но пока ЭйАр в основном встречается в телефонах. Это удобство, готовая техническая база, широкая распространенность устройств и простота написания ПО.

Заточенные под фото для соцсетей приложения предлагают примерно одни и те же функции: маски и помещение персонажей в пространство. То есть — развлечения. Но все больше компаний понимают важность этой ниши и представляют более утилитарные приложения:

AirMeasure — виртуальная рулетка, способная определять расстояния и размеры в 3д-окружении;

Google Translate умеет переводить текст, который видит камера, в реальном времени;

Sun Seeker помогает увидеть траекторию солнца на местности в любой день года;

Google Sky Map помогает узнать, какие звезды сейчас видно на небе.

Именно в мобильном сегменте сейчас сконцентрированы самые интересные ЭйАр-стартапы для массового рынка:

А одной из наиболее инвестирующих в технологию компаний является Фейсбук, который обкатывает новые идеи на своей массивной пользовательской базе.

Развлечения

Главная мобильная сфера, где себя нашла Дополненная Реальность — это, конечно же, развлечения.

Вы наверняка играли в шутеры от первого лица. Но вы когда-нибудь задумывались, что отображение количества патронов, здоровья и аптечек — это тоже дополненная реальность, только для вашего персонажа?

В начале 2000-х вышел ЭйАр-порт легендарной игры Квейк. Он так и назывался: ARQuake.

В наше же время можно и самому стать героем шутера. Например, в игре Father.IO. Такие проекты появляются все чаще.

Читайте также:  Как сделать груша своими руками колес

В 2014-м вышла игра Night Terrors, один из первых популярных ужастиков в дополненной реальности. Попробуйте его ночью в каком-нибудь подвале — не забудете.

В 2016-м студия Nyantic выпустила наследницу своей игры Ingress и самую главную ЭйАр-игру, вероятно, на много лет вперед: Pokemon Go. Дополненная реальность, геотрекинг и популярная вселенная — все сложилось настолько удачно, что Покемон Гоу скачали более ста миллионов человек. Игра быстро стала феноменом и начала собирать вокруг себя скандалы, в том числе в России. Покемон Гоу уникальна еще и тем, что заставила миллионы людей гулять на свежем воздухе.

Настольные игры получили новую форму благодаря технологии.

Такие компании как Лего и Дисней активно ведут разработку игр с использованием ЭйАр, а намерения к ним присоединиться выразили практически все крупные производители игрушек. Исследовательские группы уже занялись сбором данных о том, как маленькие дети взаимодействуют с играми и приложениями дополненной реальности, и каким образом это влияет на их восприятие реального мира. Возможно, в будущем самые интересные идеи по развитию технологии будут звучать от тех, для кого эта самая технология была просто частью детства.

Именно развлечения сегодня развивают исследовательскую базу дополненной реальности. А благодаря колоссальным объемам данных, добровольно передаваемых людьми компаниям-разработчикам, технология в связке с машинным обучением делают шаги в сторону более серьезных областей.

От развлечений к реальной жизни

Справочная информация, объявления и виртуальные указатели обязательно войдут в наше виртуальное пространство. Виртуальный экскурсовод проведет нас по развалинам замка, да еще и покажет сценку, как именно этот замок развалили, и каким он был до того. Ну а социальные функции, вроде фильтра по статусу «в активном поиске», помогут найти вторую половинку прямо в толпе.

Ну и реклама. Вот уж какая сфера спит и видит скорейшее внедрение дополненной реальности в повседневную жизнь. А свежесть и новизна формата обеспечат вау-эффект. ЭйАр появилась даже в печатных изданиях. Например, в выпуске Эсквайра 2009-го года нужно было отсканировать обложку, и тогда на ней оживал Роберт Дауни младший.

Еще раньше ЭйАр и печатные издания скрестила БМВ, выпустившая в нескольких немецких журналах рекламу модели MINI, которая на экране становилась трехмерной и позволяла себя рассматривать со всех сторон.

А обложки, к слову, есть не только у журналов и книг. Для того, чтобы с вами начала разговаривать этикетка бутылки, сегодня не нужно даже пить.

Коммерческие возможности дополненной реальности настолько обширны, что сложно очертить границы. Даже граффити не осталось в стороне от ЭйАр-технологий.

ЭйАр может использоваться для быстрой примерки в магазинах: идея зайти в мебельный и тут же на тестовом стенде собрать себе комнату с мебелью и бытовой техникой, пользуясь подсказками по сочетаемости, напрашивается сама собой.

Более интересную и полезную идею воплотил маркетинговый отдел Икеи еще в 2014-м. Примерить мебель из каталога прямо к интерьеру своей комнаты оказалось крайне заманчиво.

Вдохновляют возможности ЭйАр в сфере образования.

Образование

Технология может занять ту нишу, которая в научной фантастике отдана голограммам. Только голограммы будут еще не скоро, а устройства вроде Хололенса технически почти готовы. Перспектива увидеть в вузах, а после и школах, виртуальные интерактивные иллюстрации, которые можно рассмотреть со всех сторон, с которыми можно взаимодействовать и тут же видеть результат своих опытов, представляется прекрасным далёко из светлых фантазий о будущем. Обучение любым инженерным специальностям может стать куда более наглядным и легким для понимания.

Еще одна важная сфера — медицина.

Медицина

Тут прямо глаза разбегаются от возможностей. Кроме максимально наглядного обучения студентов медвузов, сразу представляется визуализация данных прямо на пациенте, вместо расставленных вокруг экранов. УЗИ станет максимально наглядным. Ну и будущая мама будет счастлива получить на телефон трехмерного ребеночка, которого будет с радостью крутить и рассматривать, выискивая сходство того с отцом и собой.

Но одно дело УЗИ, которое не требует оперативного вмешательства, и другое — опасные для жизни пациентов операции, где наглядность может помочь врачу быстрее реагировать и точнее работать.

Наглядную анатомию в дополненном пространстве демонстрирует HoloAnatomy для Хололенса, который как раз и про медицину, и про образование. А заодно — и одна из знаковых демок для майкрософтовского шлема.

Менее драматично, но не менее полезно — помощники для слепых и глухих, сообщающих первым о предметах и событиях вокруг и показывающие субтитры вторым.

Например, стартап Aira одновременно предлагает нейросетевого помощника, распознающего и проговаривающего всё, что видит камера очков, и живого сотрудника стартапа, что поможет сориентироваться по той же камере в особо сложной ситуации. Система привязана к приложению для смартфона. Пользователь по подписке получает очки с камерой и возможность транслировать изображение с них дежурящим сотрудникам поддержки. Но постоянно созваниваться с ними нет нужды: голосовой ассистент Аиры распознает тексты и образы, перекрывая множество повседневных городских задач. Логично, что по мере развития компьютерного зрения надстройка с живыми сотрудниками будет все менее актуальна, но сегодня это хороший компромисс из человеческих и компьютерных ресурсов.

Ну и: у кого бюджеты больше, чем у рекламщиков и игроделов? У военных.

Военные технологии

И если системы наведения в боевых истребителях, дронах и танках для армии — это сегодня дело обычное, т.к. именно из ранних систем дополненной реальности для летчиков и росли другие военные проекты в этой области. Например, продвинутые системы дополненной реальности для пехоты, которые будут внедряться уже через пару лет.

Официальная фантазия армии США

В американской армии уже сегодня используется система HUD 1.0: сильно усовершенствованный прибор ночного видения, который также выполняет функции тепловизора и проецирует в монокль на шлеме целеуказатель, показывающий куда попадет пуля при текущем положении ствола.

Облегченные полуаналоги таких систем уже более пяти лет доступны на рынке. Баллистический калькулятор от компании TrackingPoint, фактически заменяет снайперу, ну или любому желающему, напарника-споттера.

На очереди — HUD 3.0, который должен выйти в следующем году. Он будет иметь возможность накладывать на реальную картинку полностью цифровые слои местности, модели зданий, планы этажей, позиции врагов и даже самих врагов. А это уже заявка на удешевление военных учений. Военные игры обходятся государственным бюджетам в колоссальные суммы каждый год, а с помощью систем дополненной реальности солдаты смогут тренироваться с условным противником не покидая пределов базы.

Российская армия разрабатывает похожие системы для саперов.

Конечно, хотелось бы, чтобы технологии получали развитие не благодаря военным проектам и интересам, но если вспомнить историю, то многие изобретения находили широкое мирное применение, несмотря на военные корни и прошлое. Например, микроволновки, тефлон и интернет.

Будущее

Резюмируя, дополненная реальность — это не только игры и селфи с виртуальными масками. Это гигантское количество возможностей для коммерческого применения, новые горизонты в образовании, промышленности, медицине, строительстве, торговле и даже туризме. И дальше должно быть только интереснее.

Коммерческий рост ЭйАр поразителен. Ей, в отличие от виртуальной реальности, необязательно опираться на специализированное железо и громоздкие устройства. Технология прекрасно работает на самом массовом носимом девайсе — смартфоне.

Дополненная реальность уже меняет наше настоящее: виртуальные маски, охота за покемонами по городам и болотам, дети, стреляющие друг в друга не из деревяшек, а через экран телефона. Сейчас это уже реальность.

Следующий шаг — массовый выход ЭйАр из зоны развлечений и соцсетей в сектор информационной поддержки. Автопроизводители (пока лишь Хендай, БМВ и Ауди, но список растет) начинают выпускать приложения-дополнения к пользовательским инструкциям, помогающие владельцам наглядно изучить свой автомобиль. Все больше производителей техники начинают выпускать приложения для ремонтных мастерских, которые помогают мастерам ориентироваться во внутреннем устройстве сложных приборов. Амазон думает над тем, чтобы облегчить жизнь покупателям: понравились кеды на прохожем — навел на того телефон и тут же заказал себе такие же.

Сегодня мы с вами живем во время бурных исследований в отрасли. Даже у технологических гигантов нет ясной картины дальнейшего развития дополненной реальности. Это время непрерывного рождения идей, нахождения неожиданных способов применения и осознания всей мощи этой фантастической когда-то технологии — дополненной реальности.

Ролик

Эту статью об ЭйАр я подготовил для Хабра, но изначально мы делали ролик. В нем закадровый текст с техническими, историческими и просто красивыми иллюстрациями.

Источник

Оцените статью