- Самодельный дозиметр радиации: схема, как сделать
- Можно ли сделать дозиметр своими руками
- Как собрать дозиметр радиации своими руками
- Схема простого дозиметра своими руками за 3 минуты
- Схема дозиметра своими руками на СБМ-20
- Дозиметр с двухпроводным детектором своими руками
- Дозиметр с трехпроводным детектором своими руками
- Как сделать самому дозиметр с векторными резисторами
- Самодельный дозиметр с интегральными резисторами
- Заключение
- Мой самодельный дозиметр
Самодельный дозиметр радиации: схема, как сделать
Измерение радиационного фона в домашних условиях позволяет контролировать уровень загрязнения помещения и окружающего пространства. Дозиметр радиации своими руками можно изготовить как с помощью простых подручных средств, так и с использованием современных технологий. Получившийся прибор не уступит в функциональности некоторым магазинным аналогам.
Можно ли сделать дозиметр своими руками
Самостоятельно довольно сложно собрать профессиональный многофункциональный прибор, который будет способен к измерению бета и гамма-излучения. Чаще всего под портативным дозиметром понимают устройство, способное показывать уровень заражения прилегающей территории радионуклидами.
Важно! Очень часто под дозиметром подразумевают радиометр. Второй прибор показывает именно степень заражения, а не общее количество содержащейся в воздухе радиации.
Получившийся в домашних условиях дозиметр получается не самым чувствительным, однако он способен указать на наличие критического уровня заражения. Несмотря на техническое несовершенство, устройство вполне может подойти в качестве страховки человеческой жизни в тяжелых условиях.
Как собрать дозиметр радиации своими руками
Существует большое количество схем по сбору портативного устройства для измерения радиационного фона. Для начинающих постигать основы радиотехники подойдут самые простые устройства на резисторах СБМ-20. Более опытные любители могут сконструировать дозиметр радиации своими руками с двух- или трехпроводным детектором, а также используя векторные или интегральные резисторы.
Независимо от выбора схемы будущего устройства, при его сборке стоит использовать несколько простых правил. Они позволят получить максимально качественный прибор, который будет безопасен для жизни и здоровья человека. Большинство экспертов советуют:
- Использование 400 вольтовых счетчиков. Если модуль рассчитан на 500 вольт, придется вносить дополнительные корректировки в настройки цепи.
- Перед началом использования прибора необходимо измерить его выходную мощность при помощи 10 Мом вольтметра. Оно должно составлять ровно 400 вольт. Стоит помнить, что несмотря на малую удельную мощность, при неправильной настройке конденсаторы могут нести опасность здоровью.
- Необходимо исключить возможность доступа к элементам, на которые подается высокое напряжение. Корпус должен плотно закрывать электрические приборы.
- Подключение всех узлов производится при отключенном питании и разряженных конденсаторах.
Несмотря на выбор схемы будущего устройства, общий принцип работы дозиметра радиации будет практически одинаковым. Он будет выдавать некоторое количество звуковых сигналов. При нормальном радиационном фоне этот показатель будет на уровне 30. Увеличенное количество сигналов говорит о значительном повышении уровня загрязнения окружающей среды.
Схема простого дозиметра своими руками за 3 минуты
Такой метод позволяет получить самодельный прибор для измерения радиации в максимально короткие сроки. Технология подразумевает минимальный набор навыков и самое простое оборудование.
Чтобы изготовить такое устройство, потребуется:
- пластиковая бутылка;
- консервная банка;
- простой тестер;
- 20 см медной или стальной проволоки;
- транзистор кп303.
У жестяной банки удаляют верхнюю часть и слегка полируют края наждачной бумагой, чтобы не поранить руки. Бутылку обрезают под горлышко, оставляя около 10-15 см — она должна плотно входить в банку. В крышке делают 2 отверстия — в одно из них вставляют проволоку, чтобы она выходила на 1-2 см. После этого второй конец загибают и вставляют во вторую дырку.
Важно! Конец проволоки ни в коем случае не должен касаться дня жестяной банки.
Ножку транзистора прикручивают к получившейся петле. К его истоку и стоку подключают клеммы тестера. После этого можно приступать к непосредственной калибровке дозиметра. В качестве эталона используют лабораторные источники излучения.
Схема дозиметра своими руками на СБМ-20
Более продвинутые модели можно собрать, использовав специальные счетчики. СБМ-20 состоит из герметичной трубки — катода, сквозь который проходит анод в виде проволоки. Внутри полость наполнена газом — это обеспечивает оптимальную электропроводность.
Также для дозиметра радиации своими руками потребуется:
- счетчик на 400 вольт СТС-5;
- резистор до 2 вт;
- керамические или бумажные конденсаторы.
Дозиметр состоит из двух пластиковых блоков — сетевого выпрямителя и индикатора. Их соединяют между собой разъемом. Сетевой выпрямитель собирают согласно схеме. Перед включением необходимо зарядить конденсаторы — для этого прибор включают в сеть на небольшой промежуток времени.
Важно! Устройство в сборе должно иметь закрытый блок с резисторами. Недопустимо прикасаться к их контактам голыми руками.
После зарядки к дозиметру подключают телефоны с высокими показателями сопротивления. При естественном природном уровне радиации аппарат будет регистрировать редкие телефонные сигналы. Загрязнение окружающего пространства повлечет более частые сигналы. Если дозиметр совсем замолчал — скорее всего, кончился заряд конденсаторов. Полностью заряженное устройство способно работать около 20 минут.
Дозиметр с двухпроводным детектором своими руками
Такой прибор отлично подойдет для улавливания значительных изменений радиации. Процесс изготовления такого дозиметра не доставит сложностей опытным радиолюбителям.
Для его сбора своими руками необходимо:
- конденсатор проходной;
- двухпроводной детектор;
- 3 резистора;
- одноканальный демпферный элемент;
- пластиковый контейнер.
Двухпроводной детектор обеспечит лучшую чувствительность к перепадам радиации
Для конструкции не используют расширители, предпочитая им резонансные выпрямители. Демпфер ставят непосредственно после детектора для снижения амплитуды колебаний. За ним устанавливают проходной конденсатор — именно он определяет исходную дозу радиации. Изготовленный своими руками по такой технологии дозиметр будет более чувствительным к колебаниям радиации, однако потребует больше времени в сборке.
Дозиметр с трехпроводным детектором своими руками
Более сложные устройства относят уже к профессиональным приборам измерения. Они показывают не только уровень радиации, но и текущую мощность излучения. Задача сборки такого дозиметра может стать сложной даже для опытных радиолюбителей.
Важно! Детектор устанавливают лишь после закрепления всех проходных конденсаторов.
Для сборки используют электролитические резисторы закрытого типа и одноканальные демпферы. В выборе расширителей отдают предпочтение низкочастотным вариантам. Замер радиации выполняется только резонансными выпрямителями.
Дозиметр радиации на трехканальном детекторе позволяет замерять также мощность излучения
Мощность собранного своими руками дозиметра зависит от используемого выходного резистора. Отдельным моментом при сборке такого аппарата стоит отметить довольно частый отказ от использования стабилитронов — они являются причиной высоких погрешностей при измерении.
Как сделать самому дозиметр с векторными резисторами
Векторные элементы являются дополнением к более традиционным приборам с сетевыми детекторами. Основным отталкивающим фактором в изготовлении таких дозиметров радиации является итоговая цена основной запчасти — ее приобретение может вылиться в довольно внушительную сумму.
Векторные резисторы более дорогостоящие по сравнению с другими аналогами
Как и в случае с детекторными дозиметрами векторные резисторы устанавливают лишь после закрепления всех проходных конденсаторов. Число последних может варьироваться от одного до двух на одну модель в зависимости от желаемой мощности. Для нормальной работы необходимы конденсаторы объемом около 20 пФ.
Важно! При большом количестве проходных конденсаторов может значительно увеличиваться сопротивление, и, как следствие, итоговые погрешности.
После установки векторных резисторов в дозиметр радиации можно переходить к монтажу выпрямителя. Лучше всего использовать модели резонансного типа. Кроме того, эксперты говорят о возможности применения позиционных выпрямителей. После полного сбора устройства его помещают в пластиковый корпус и калибруют в лабораторных условиях.
Самодельный дозиметр с интегральными резисторами
Изготовленный по такой технологии прибор отличается высокими показателями чувствительности. Схема дозиметра радиации своими руками на микроконтроллере не представляет сложностей для опытных радиолюбителей. Встречаются как одноканальные, так и многоканальные модели.
Первым делом для изготовления дозиметра радиации своими руками необходимо подобрать корпус. Подойдет обычная пластиковая коробка соответствующих размеров. В нее устанавливают демпфер. Дальнейшая сборка совпадает с технологией изготовления прибора с векторными резисторами.
Особенностью интегральных резисторов является высокая точность измерения
Важной особенностью является установка конденсаторов после резисторов. В среднем понадобится около 3 элементов. Чувствительность конденсаторов напрямую зависит от используемого расширителя. После подбирается специальный счетчик двоичного типа. Их устанавливают непосредственно на сам детектор.
Заключение
Дозиметр радиации своими руками — отличное решение, которое позволяет самостоятельно регистрировать увеличение уровня загрязнения радионуклидами. Изготовленный прибор позволит вовремя заметить смещение радиационного фона. Правильно сконструированное устройство может конкурировать с более технологичными и дорогостоящими магазинными аналогами.
Источник
Мой самодельный дозиметр
Разработка самодельного дозиметра связана с тем, что в моем дозиметре ДБГБ-01 «Ратон-901» вышел из строя стабилитрон СГ301-С.Стабилитрон тлеющего разряда СГ301-С в стеклянном заполненном водородом корпусе специально разрабатывался для работы с 400-вольтовыми счётчиками Гейгера (например, СБМ-20). Его напряжение стабилизации равно 390 В.
Проявлялась неисправность стабилитрона в полном безразличии дозиметра к радиоактивному излучению 🙂 Но так как радиационная разведка — увлекательное занятие, мне захотелось все-таки обратно заполучить в свои руки дозиметр. Восстанавливать старый дозиметр — скучно, купить — слишком банально, гораздо интереснее сделать самому!
Я использовал из своего заводского дозиметра только счетчик Гейгера, тот самый таинственный ПРГИ-101.
Мой DIY-дозиметр представляет собой объединенные в одном корпусе высоковольтный источник, счетчик Гейгера и формирователь импульсов —
блок-схема дозиметра
вид дозиметра внутри
1 — CCFL-инвертор
2 — умножитель
3 — счетчик Гейгера
4 — формирователь импульсов
5 — согласующая цепь
6 — выключатель питания и разъем для внешнего питания
7 — штеккер для подключения к аудиоразъему смартфона/ноутбука
вид дозиметра снаружи
Как Вы успели заметить, корпусом служит футляр от видеокассеты 🙂 из полипропилена.
принципиальная схема дозиметра
(щелкните мышкой для просмотра схемы в увеличенном масштабе)
Как основу для высоковольтного источника я использовал инвертор для вышедшей из строя CCFL лампы подсветки.
Умножитель C2-C5, VD2-VD4 обеспечивает увеличение напряжения, вырабатываемого CCFL-инвертором, в несколько раз и его выпрямление. Конденсатор C6 сглаживает пульсации напряжения. Напряжение для регулировки снимается с делителя R11-R16 и поступает на инверсный вход ОУ DA1.2, а опорное напряжение снимается с регулируемого делителя R8-R10 и поступает на прямой вход ОУ DA1.2. При превышении напряжением на выходе умножителя заданного уровня на выходе ОУ DA1.2 напряжение резко снижается, МДП-транзистор VT1 закрывается, что вызывает закрытие p-n-p транзистора VT2. При этом подача напряжения на CCFL-инвертор прекращается.
Напряжение с выхода умножителя поступает через резистор R22 на трубку Гейгера-Мюллера. При попадании частицы ионизирующего излучения в счетчике происходит разряд, возникает импульс тока, и, как следствие, импульс напряжения на резисторе R23. Через резистор R24 и ограничивающий диод VD7 этот импульс поступает на прямой вход ОУ DA1.1. На инверсный вход поступает опорное напряжение, снимаемое с регулируемого делителя R18-R20. При превышении импульсом напряжения от счетчика Гейгера уровня опорного напряжения на выходе ОУ вырабатывается импульс напряжения, через резистор R21 поступающий на затвор МДП-транзистора VT3 и открывающий его. Напряжение на стоке транзистора VT3 резко падает и, поступая на вывод 2 таймера DA2, вызывает срабатывание одновибратора на таймере DA2. Удлиненный импульс с вывода 3 таймера DA2 поступает на бипер SP1 и зажигает светодиод HL3 через резистор R26. Также импульс напряжения со стока транзистора VT3 поступает на вход схемы согласования дозиметра и смартфона. Конденсатор C10 развязывает дозиметр и смартфон по постоянному напряжению. Резисторы R27 и R28 составляют делитель напряжения, уменьшающий уровень импульса напряжения. Светодиоды HL4 и HL5 дополнительно ограничивают уровень выходного напряжения, поступающего на микрофонный вход смартфона.
Питание
Питание дозиметра осуществляется от призматической батареи («Кроны») напряжением 9 В.
Также предусмотрен разъем для подключения внешнего источника питания.
Для счетчика Гейгера поддержание напряжения питания на номинальном уровне играет важную роль в работе счетчика. При пониженном напряжении питания попадание частицы радиации внутрь счетчика не приведет к его срабатыванию. При повышенном напряжении питания в трубке счетчика будут возникать самопроизвольные разряды, т.е. счетчик будет срабатывать даже при отсутствии радиации. Для работы счетчика в нормальном режиме напряжения питания должно находиться в диапазоне, получившем название плато Гейгера (Geiger plateau).
характеристическая кривая (characteristic curve) счетчика Гейгера
На характеристической кривой плато Гейгера соответствует почти горизонтальная линия, т.е. на этом участке скорость счета почти не зависит от напряжения. Для продления срока службы трубки Гейгера номинальное напряжение U0 выбирается в пределах первой трети плато (обычно значение больше предела примерно на 100 В). Для счетчика Гейгера ПРГИ-101, как и для СБМ-20, номинальное напряжение питания составляет
390 В. При напряжении питания в диапазоне 7. 15 В на выходе умножителя моего дозиметра поддерживается напряжение
400 В, оптимальное для используемого счетчика Гейгера.
Потребляемый ток дозиметра составляет при этом
30 мА и практически не изменяется при изменении напряжения питания в диапазоне 7. 15 В.
При снижении напряжения питания ниже 7 В напряжение, поддерживаемое на выходе умножителя, уменьшается.
Напряжение питания, В | Напряжение на выходе умножителя, В | ||||||||||||||||||||||||||||
7 | |||||||||||||||||||||||||||||
6,5 | |||||||||||||||||||||||||||||
5,5 |
50,47 . 50,67 |
48,20 . 52,13 |
48,20 . 52,13 |
46,93 . 52,13 |
46,93 . 53,87 |
На адекватность результатов измерений влияет параметр «Пауза» приложения (определяет «мертвое время» после регистрации импульса), причем его требуемое значение зависит от частоты дискретизации аудиосигнала при записи, отличающейся у разных смартфонов.
Эта частота, с которой оцифровывается сигнала при записи, может быть определена с помощью приложения Audio Buffer Size от Raph Levien (Twiiter — https://twitter.com/raphlinus):
Google Play: https://play.google.com/store/apps/details?id=com.levien.audiobuffersize
Для смартфона Huawei Y6 SCL-L01 с частотой дискретизации 48 кГц
я получил такую зависимость между полученным доверительным интервалом CPM и величиной паузы:
Пауза | CPM |
3 | 88. 89 |
5 | 84. 88 |
8 | 62. 62 |
10 | 55. 58 |
15 | 54. 57 |
Как видно, для частоты дискретизации 48 кГц при длительности паузы 10 сэмплов и более величина CPM практически не изменяется, что свидетельствует об адекватности результатов измерений, например, при величине паузы, равной 15 сэмплам. Задание заниженного значения паузы приводит к завышению результатов измерений радиационного фона.
Для смартфона Huawei G600 U8950-1 с частотой дискретизации 44,1 кГц
можно использовать величину паузы, равную 5 сэмплам.
Также на показания прибора влияет заданное значение уровня.
Я получил такую зависимость между CPM и величиной уровня (для паузы, равной 15):
Уровень | CPM |
10 | 89 |
15 | 57 |
20 | 50 |
25 | 51 |
30 | 52 |
При значении уровня 30 % и выше импульсы перестают учитываться.
Как видно из таблицы, целесообразно выбрать уровень, равный 25 %.
Аналогичные приборы
Дозиметры Pocket Geiger Counter (цена $46) c восемью фотодиодными сенсорами или более совершенный Pokega Type2 (цена $65), разработанные японской некоммерческой организацией Radiation Watch, также рассчитаны на подключение к аудиовходу смартфона Apple iPhone для эксплуатации совместно с приложением Pocket Geiger Counter App:
Статистический анализ результатов измерений
Радиоактивный распад является случайным процессом. Количество распадов радиоактивного источника за единицу времени подчиняется распределению Пуассона (Poisson distribution)). Распределение Пуассона описывает вероятность случайных событий в определенном временном или пространственном интервале и применимо к множеству явлений.
Если использовать для описания таких случайных событий, как попадания ионизирующих частиц в счетчик Гейгера, распределение Пуассона, то вероятность того, что за заданный интервал времени $T$ в счетчик попадет $x$ частиц, определяется выражением $P\left(x\right) =
пример распределения Пуассона для $\mu = 10$
$\mu = \lambda T$ , где $\lambda$ (или $n$) — среднее число частиц, попадающих в счетчик за единицу времени (скорость счета). Скорость счета обычно измеряется в импульсах в минуту — CPM (Counts Per Minute) и является относительным показателем радиационного фона.
Следует отметить, что при большой скорости радиоактивного распада можно использовать и более удобное нормальное распределение (Gaussian distribution).
сравнение распределений Пуассона и Гаусса при $\mu = 100$
В этом случае вероятность того, что за заданный интервал времени $T$ в счетчик попадет $x$ частиц, определяется выражением $P\left(x\right) = <1\over<\sqrt<2\pi\mu>>>
Для оценки погрешности измерений интенсивности ионизирующего излучения можно использовать методы математической статистики.
Выполнение серии измерений.
Проводя $N$ измерений, получаем различные значения скорости счета импульсов (count rate) $n$. Если количество измерений велико, то распределение скоростей счета может быть аппроксимировано нормальным распределение (Gaussian Distribution).
Определим среднее значение скорости счета (mean count rate) $n_A = <\sum_^N
С вероятностью 68 % истинное среднее значение скорости счета лежит в интервале $n_A\pm \sigma_M$, 95 % — в интервале $n_A\pm 2\sigma_M$, 99,7 % — в интервале $n_A\pm 3\sigma_M$ (правило трех сигм) —
При этом количество измерений, которые необходимо выполнить, чтобы определить среднее значение скорости счета с доверительной вероятностью 95 %, определяется выражением $\sqrt
Для наглядности можно построить гистограмму, на которой по горизонтальной оси отложены численные значения скорости счета (count rate) или число импульсов (counts) за заданный интервал времени (gate time), и у каждого интервала скорости счета или числа импульсов строится столбец, высота которого соответствует количеству измерений (frequency), в которых наблюдалась скорость счета или число импульсов, входящие в этот интервал.
Я провел опыт по многократному измерению радиационного фона в квартире — число измерений N = 61, среднее значение скорости счета 50,61 CPM, стандартное отклонение средней скорости счета 0,89 CPM:
Файл с результатами измерений можно загрузить здесь.
Гистограмма для скоростей счета:
Также я провел измерения в частном доме в деревне Еремино недалеко от Гомеля — число измерений N = 80, среднее значение скорости счета 52,99 CPM, стандартное отклонение средней скорости счета 0,86 CPM:
Файл с результатами измерений можно загрузить здесь.
Гистограмма для скоростей счета:
Выполнение одного измерения.
Если мы проводим одно измерение числа импульсов $N$ за достаточно длительный интервал времени $T$, то доверительный интервал, в котором с вероятностью 95 % находится истинное число импульсов, можно определить как $N \pm \sqrt
Погрешность из-за «мертвого» времени счетчика
Для счетчика Гейгера при измерении высокого радиационного фона существует проблема, связанная с наличием у счетчика «мертвого» времени. После попадания гамма-частицы в счетчик в течение некоторого интервала времени («мертвого» времени счетчика — dead-time) он не сможет детектировать попадание новой частицы. Из-за этого наблюдаемая скорость счета $N_<набл>$ оказывается несколько меньше истинной $N_<ист>$. Ситуация ухудшается тем, что попадание новой частицы не только не детектируется, но и продлевает «мертвое» время.
Связь между наблюдаемой и истинной скоростями счета определяется выражением:
$N_ <набл>= N_ <ист>e^<-N_<ист>\tau>$ , где $\tau$ — «мертвое» время счетчика (20 мкс для старых моделей).
Следует отметить, что это уравнение трансцендентное, т.е. его нельзя записать в виде $N_<ист>=. $.
Космические лучи
Одной из причин возникновения фоновых разрядов в счетчике Гейгера являются мюоны. Детектирование этих частиц — не менее интересный процесс, чем поиск радиоактивных артефактов.
Экспериментальная проверка работоспособности дозиметра и приложения GeigerCounter
измерение уровня радиоактивности немецкого компаса времен ВМВ
Я владею немецким компасом, у которого на кончик стрелки и на метки циферблата нанесен светящийся состав, содержащий радий-226.
внешний вид компаса
Результаты многократных измерений (N=15) показали, что средняя скорость счета дозиметра, расположенного вблизи компаса, составила 275,4 ± 4,24 CPM.
измерение ионизирующего излучения компаса
Естественный радиационный фон составил 52,2 ± 1,67 CPM.
Таким образом, превышение уровня излучения от компаса составило 5,3 раза.
измерение уровня естественного радиационного фона
В учебной лаборатории моего университета имеются три тахометра, использовавшиеся на самолетах Ан-2.
измерение уровня радиоактивности тахометра из учебной лаборатории
Результаты многократных измерений (N=15) показали, что средняя скорость счета дозиметра, расположенного вблизи тахометра, составила 4082,33 ± 17,20 CPM.
измерение ионизирующего излучения тахометра
Также я экспериментально оценил возможность экранирования ионизирующего излучения различными материалами.
Электромагнитные помехи
Следует заметить, что на дозиметр оказывают мешающее воздействие источники электромагнитного излучения, например, мобильные телефоны. Я провел опыт, расположив ВЧ-модуль мобильного телефона над счетчиком Гейгера и осуществив звонок с этого телефона. При наборе номера дозиметр «трещал» периодически (в такт импульсам излучения телефона (этот характерный звук мы слышим в динамиках колонок компьютера, если рядом лежит мобильный телефон), а в процессе дозвона — непрерывно:
1 — импульс от частицы ионизирующего излучения;
2 — шум;
3 — набор номера;
4 — дозвон до абонента.
Импульсы помехи от телефона:
Как видно из осциллограммы, период импульсного сигнала, регистрируемого дозиметром, составляет 1/44100*203
4,6 мс.
Помеха воздействовала на дозиметр при удалении телефона на несколько сантиметров от счетчика Гейгера.
Альтернативные подходы к подсчету импульсов, поступающих со счетчика Гейгера
Подсчет импульсов от счетчика Гейгера, подключенного к звуковой карте компьютера, с помощью специализированных программ
Для счетчика Гейгера CDV-700 или другого счетчика с импульсным выходом, подключаемым к линейному входу звуковой карты, существует программа CDV Counter.
Подсчет импульсов от счетчика Гейгера, подключенного к звуковой карте компьютера, с помощью MATLAB
A. A. AzoozВ статье Operating a Geiger–Müller tube using a PC sound card, опубликованной в European Journal of Physics 30 (2009), описывается использование MATLAB для захвата данных со звуковой карты, к линейому входу которой подключен счечик Гейгера. Автор статьи — профессор Aasim Abdulkareem Azooz (университет Мосула, Ирак).
Статью в PDF-формате можно прочитать по ссылке https://foxylab.com/Geiger_Azooz.pdf (568 Кбайт).
В статье указывается, что трубки Гейгера и высоковольтные источники относительно дешевы и широко доступны в большинстве лабораторий, но счетчики импульсов на так доступны, особенно в разивающихся странах. Использование звуковой карты компьютера для подсчета импульсов с трубки Гейгера-Мюллера обеспечивает как высокую частоту оцифровки, так и доступность на любом компьютере.
схема экспериментальной установки
При параметрах элементов R = 4,7 кОм, C = 100 нФ вырабатываются импульсы величиной около 0,6 В, которые поступают на вход звуковой карты.
Программная обработка сигнала на входе звуковой карты осуществляется с помощью программного пакета MATLAB.
Для детектирования импульсов при этом используются два критерия:
1 — напряжение сигнала превышает заданный лимит (это необходимо для устранения влияния шума и резко уменьшает загрузку процессора, предел задан равным 0,4 В, он может быть изменен в строке 21 кода программ GM1 и GM2):
2 — значения напряжения слева и справа от рассматриваемой как пик импульса точки должны быть меньше напряжения в этой точке (это позволяет уменьшить «мертвое » время счетчика Гейгера и учитывать импульс, наложившийся на предыдущий импульс, как отдельный):
Сравнение вида импульса на осциллографе и построенного в MATLAB показывает их хорошее совпадение по форме:
Я тоже провел эксперименты по обработке импульсов от своего DIY-дозиметра, подключенного к аудиоразъему ноутбука, в MATLAB. Подробнее об этих экспериментах можно прочитать здесь.
Подсчет импульсов от счетчика Гейгера, подключенного к параллельному порту компьютера, с помощью специализированных программ
Fernando ArquerosВ статье Studying the statistical properties of particle counting with a very simple device, опубликованной в European Journal of Physics 25/2004 описывается подключение трубки Гейгера к параллельному порту персонального компьютера. Авторы статьи — F. Arqueros, F. Blanco, B. Jim´ enez de Cisneros (университет Комплутенсе, Мадрид — крупнейший вуз Испании, основан в 1499 году).
Статью в PDF-формате можно прочитать по ссылке https://foxylab.com/Geiger_Arqueros.pdf (154 Кбайт).
В статье описывается подключение трубки Гейгера к входной линии (11) LPT-порта через схему для укорочения импульса:
Для укорачивания импульса используется дифференцирующая RC-цепочка, которая превращает входной прямоугольный импульс в экспоненциальный выходной.
Для детектирования импульсов можно использовать простую программу на BASIC:
Число 128 в строке 20 в команде WAIT соответствует использованному выводу 11 параллельного порта (числа 64, 32, 16 и 8 соответствовали бы выводам 10, 12, 13 и 15 соответственно).
Эта программа печатает моменты времени t1, t2, . , tN, в которые детектировался разряд в трубке Гейгера.
Подсчет импульсов от счетчика Гейгера с помощью LabVIEW
В статье Computer based radioactivity measurement with acquisition and monitoring radiation data using LabVIEW, опубликованной в 2008 году, описывается подсчет импульсов счетчика Гейгера с помощью LabVIEW. Авторы статьи — Masudul Hassan Quraishi, Md. Aminul Hoque, Anisa Begum, Mohammad Jahangir Alam (университет инжиниринга и технологий в городе Дакка, Бангладеш).
Статью в PDF-формате можно прочитать по ссылке https://foxylab.com/Geiger_Quraishi.pdf (2,84 Мбайт).
схема экспериментальной установки
Недостатком такого метода является необходимость наличия специализированной подключаемой к компьютеру DAQ-карты, которая «захватывает» импульсы с детектора, подключенного к трубке Гейгера.
Применение счетчика Гейгера в качестве генератора случайных чисел
Основополагающими работами по использованию лабораторного радиоактивного источника в качестве генератора случайных событий можно считать статьи MacLeod A M 1976 года в Am. J. Phys. 44 177-80, 172-6 и 1980 года в Eur. J. Phys. 1 88-97. В этих статьях описано исследование распределения Пуассона, описаны детали схемы счетчика и схемы вывода графических данных на телевизионный экран. Элементная база 1976 года обусловила достаточно громоздкое построение схемы счетчика из 34 интегральных микросхем 74-й серии.
F. J. MulliganВ статье F. J. Mulligan 1987 года Letters and comments в Eur. J. Phys. 8 53-57 описана замена этой сложной схемы двумя вентилями И-НЕ и микросхемой 6522 VIA:
Статью в PDF-формате можно прочитать по ссылке https://foxylab.com/Geiger_Mulligan.pdf (261 Кбайт).
Микросхема 6522 Versatile Interface Adapter (VIA) является контроллером портов ввода-вывода для микропроцессоров серии 6502 (параллельный ввод-вывод, таймеры, регистр сдвига для последовательного ввода-вывода данных). Она содержит 20 линий ввода-вывода и 4 управляющих линии.
Продолжение следует
Источник