Драйвер для 100 ватт своими руками

Как сделать драйвер для светодиода

Для применения светодиодов в качестве источников освещения обычно требуется специализированный драйвер. Но бывает так, что нужного драйвера под рукой нет, а требуется организовать подсветку, например, в автомобиле, или протестировать светодиод на яркость свечения. В этом случае можно сделать драйвер для светодиодов своими руками.

Как сделать драйвер для светодиодов

В приведенных ниже схемах используются самые распространенные элементы, которые можно приобрести в любом радиомагазине. При сборке не требуется специальное оборудование, — все необходимые инструменты находятся в широком доступе. Несмотря на это, при аккуратном подходе устройства работают достаточно долго и не сильно уступают коммерческим образцам.

Необходимые материалы и инструменты

Для того, чтобы собрать самодельный драйвер, потребуются:

  • Паяльник мощностью 25-40 Вт. Можно использовать и большей мощности, но при этом возрастает опасность перегрева элементов и выхода их из строя. Лучше всего использовать паяльник с керамическим нагревателем и необгораемым жалом, т.к. обычное медное жало довольно быстро окисляется, и его приходится чистить.
  • Флюс для пайки (канифоль, глицерин, ФКЭТ, и т.д.). Желательно использовать именно нейтральный флюс, — в отличие от активных флюсов (ортофосфорная и соляная кислоты, хлористый цинк и др.), он со временем не окисляет контакты и менее токсичен. Вне зависимости от используемого флюса после сборки устройства его лучше отмыть с помощью спирта. Для активных флюсов эта процедура является обязательной, для нейтральных — в меньшей степени.
  • Припой. Наиболее распространенным является легкоплавкий оловянно-свинцовый припой ПОС-61. Бессвинцовые припои менее вредны при вдыхании паров во время пайки, но обладают более высокой температурой плавления при меньшей текучести и склонностью к деградации шва со временем.
  • Небольшие плоскогубцы для сгибания выводов.
  • Кусачки или бокорезы для обкусывания длинных концов выводов и проводов.
  • Монтажные провода в изоляции. Лучше всего подойдут многожильные медные провода сечением от 0.35 до 1 мм2.
  • Мультиметр для контроля напряжения в узловых точках.
  • Изолента или термоусадочная трубка.
  • Небольшая макетная плата из стеклотекстолита. Достаточно будет платы размерами 60х40 мм.

Макетная плата из текстолита для быстрого монтажа

Схема простого драйвера для светодиода 1 Вт

Одна из самых простых схем для питания мощного светодиода представлена на рисунке ниже:

Как видно, помимо светодиода в нее входят всего 4 элемента: 2 транзистора и 2 резистора.

В роли регулятора тока, проходящего через led, здесь выступает мощный полевой n-канальный транзистор VT2. Резистор R2 определяет максимальный ток, проходящий через светодиод, а также работает в качестве датчика тока для транзистора VT1 в цепи обратной связи.

Чем больший ток проходит через VT2, тем большее напряжение падает на R2, соответственно VT1 открывается и понижает напряжение на затворе VT2, тем самым уменьшая ток светодиода. Таким образом достигается стабилизация выходного тока.

Питание схемы осуществляется от источника постоянного напряжения 9 — 12 В, ток не менее 500 мА. Входное напряжение должно быть минимум на 1-2 В больше падения напряжения на светодиоде.

Читайте также:  Датчик для пожарной сигнализации своими руками

Резистор R2 должен рассеивать мощность 1-2 Вт, в зависимости от требуемого тока и питающего напряжения. Транзистор VT2 – n-канальный, рассчитанный на ток не менее 500 мА: IRF530, IRFZ48, IRFZ44N. VT1 – любой маломощный биполярный npn: 2N3904, 2N5088, 2N2222, BC547 и т.д. R1 – мощностью 0.125 — 0.25 Вт сопротивлением 100 кОм.

Ввиду малого количества элементов, сборку можно производить навесным монтажом:

Еще одна простая схема драйвера на основе линейного управляемого стабилизатора напряжения LM317:

Здесь входное напряжение может быть до 35 В. Сопротивление резистора можно рассчитать по формуле:

R=1,2/I

где I – сила тока в амперах.

В этой схеме на LM317 будет рассеиваться значительная мощность при большой разнице между питающим напряжением и падением на светодиоде. Поэтому ее придется разместить на небольшом радиаторе. Резистор также должен быть рассчитан на мощность не менее 2 Вт.

Более наглядно эта схема рассмотрена в следующем видео:

Здесь показано, как подключить мощный светодиод, используя аккумуляторы напряжением около 8 В. При падении напряжения на LED около 6 В разница получается небольшая, и микросхема нагревается несильно, поэтому можно обойтись и без радиатора.

Обратите внимание, что при большой разнице между напряжением питания и падением на LED необходимо ставить микросхему на теплоотвод.

Схема мощного драйвера с входом ШИМ

Ниже показана схема для питания мощных светодиодов:

Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

Особенности драйвера

  • Напряжение питания: 5 — 24 В, постоянное;
  • Выходной ток: до 1 А, регулируемый;
  • Выходная мощность: до 18 Вт;
  • Защита от КЗ по выходу;
  • Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как регулировать яркость светодиодной ленты через диммер).

Принцип действия

Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

  • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
  • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
  • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.
Читайте также:  Зажим для ножей для заточки своими руками

В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

Сборка и настройка драйвера

Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.

Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.

При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно проверить с помощью мультиметра в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом.

Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.

После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.

Заключение

Первые две из рассмотренных схем очень просты в изготовлении, но они не обеспечивают защиты от короткого замыкания и обладают довольно низким КПД. Для долговременного использования рекомендуется третья схема на LM393, поскольку она лишена этих недостатков и обладает более широкими возможностями по регулировке выходной мощности.

Источник

Как я запускал мощный светодиодик. Драйвер 100Вт светодиода.

Решил проапгрейдить свою систему освещения. Для этого прикупил на DX светодиодик.

Данный светодиодик достаточно мощный и светит чистым белым цветом, без всякого постороннего желтоватого или синеватого оттенка.

Что было до этого

Юзал я для освещения вот такую сборку из 10 белых светодиодиков по 1 Вт.

В качестве драйвера — вот такой сундучок)

Там небольшой трансик, платка управления на меге, линейный драйвер светодиодика (после ШИМа и RC-цепочки). В общем, всё довольно тупо. Из-за небольшой мощности, небольшого падения напряжения и большого радиатора, ничего не грелось. Кроме трансика)

Впрочем, решено было данную систему проапгрейдить. 10 Вт — фии для светолюбивого человека вроде мя.)

Первый вариант схемы

В качестве драйвера мощного светодиодика я решил применить бустерный стабилизатор. Бустер хорошо умеет регулировать ток и может повысить напряжение до требуемых светодиодику 32 вольт.

В инете нарылся калькулятор бустера, в который я вбил приблизительные данные.

Вот, что получилось.

Что же, выбираем детальки.

Для управления подойдёт тинька 26L — дешёвая, имеющая быстрый асинхронный таймер, тактируемый от 64 МГц, АЦП.

Из силовухи — мосфитик IRLU024N, с логическим управлением, непрерывный ток стока до 17 А. Дросселей решил сделать несколько разных, потом методом тыка выбрать наиболее удачный.

В качестве нагрузки, которую не жалко (да и не просто) убить — обычная лампочка на 36 вольт. Вот такая схемка получилась.

Недолго думая, собрал. Дроссель, который на фотке — от какого-то китайского компового блока питания, с выхода 3.3 В. Он, кстати, и остался в окончательной версии.

Читайте также:  Акустическая система колонки своими руками

Тиньку пока повесил просто на проводочках. Прошивка считывает положение переменного резистора и выставляет соответствующее заполнение ШИМа. Частота ШИМа — 125 кГц.

Что же, смотрим напряжение на лампочке и повышаем заполнение до тех пор, пока не получим нужные 36 вольт. Выходная мощность — 60 Вт. Лампочка ярко светит секунд 30, затем кондёры немножко надуваются, а силовой транзистор выпаивается из платки. Фейл. (

Второй вариант схемы

Оказывается, у мосфитов есть очень вредный параметр — заряд затвора (Qg). Например, для нашего IRLU024N он равен 15 нКул. То есть, затвор полностью заряжается за 15 нс током 1 А. А жалкие 20 мА с тинькиной ножки зарядят затвор куда медленней, где-то за 750 нс. Учитывая, что период ШИМа при частоте 125 кГц составляет 8000 нс, заряд-разряд отъедает почти 40% времени ton (при заполнении 50%), вот транзистор и греется как самовар.

Чтобы ускорить этот процесс, юзаются специальные драйверы затвора. Например, IR4428 (IR4426, IR4427). Такой драйвер может выдать импульс в несколько ампер, который быстро перезарядит затвор. А ещё у драйвера есть триггер Шмитта на входе, так что кривая форма входного сигнала ему не страшна.

От «логических» мосфитиков я решил отказаться. В конце концов, был выбран дубовый IRF3205.

Входные и выходные конденсаторы зашунтированы мелкой керамикой, для фильтрации мощных импульсных токов.

Вот что получилось.

Дорожки силового контура пропаял толстым проводом.

Без этого дорожки будут жутко греться)

Новая схемка заработала куда лучше. Выходная мощность 60 Вт, схемка чуть греется (без радиатора). КПД чуть меньше 90%. Поставил на транзистор и диод небольшой радиатор и подцепил вторую лампочку. Выходная мощность 120 Вт, схемка греется, но опасений за её жизнь не возникает)

Испытания

Собрал платку управления.

Прошивка считывает рабочие ток и напряжение светодиодика и компенсирует разницу между текущим и заданным значением, изменяя заполнение ШИМа.

Требуемая мощность выбирается кнопочками и отображается светодиодной линейкой. DS1820 прицеплен к радиатору светодиодика. При нажатии двух кнопочек сразу, на светодиодной линейке отображается температура.

При превышении рабочего напряжения, тока или температуры, девайс уходит в защиту.

Второй канал ШИМа заюзан для регулировки оборотов вентилятора, обдувающего радиатор светодиодика. Вентилятор подключен к такому простенькому драйверу.

Запихал всё в ту же коробочку)

Кнопочками задаётся мощность — 3.2, 6.4, 12.8, 25.6, 51.2 или 102.4 Вт.

Сам светодиодик приделан к какому-то радиатору, купленному в ДНСе рублей за 50.

Что можно сказать о мощности?)

3.2 Вт. Полумрак. Мона юзать как фоновую подсветку при работе за компом.

12.8 Вт. Аналог моей предыдущей лампочки. Вполне мона работать.

51.2 Вт. Уже посветлее. Можно возиться с SMD мелочёвкой и не обязательно придвигать лампочку близко к себе. Удобно)

102.4 Вт. Визуально не очень сильно отличается от 51.2 Вт. Но самому девайсу явно приходится куда туже) Светодиодик пышет жаром, подводящие провода сильно греются. Руку под светодиодиком нельзя держать дольше нескольких секунд. В нескольких сантиметрах перед светодиодиком плавится целофановый пакетик.

Полная моща. Дело было ночью.

Спасиб Vga за помощь в разработке девайса!

upd: Выяснилось, что разнести контроллер и силовую часть на разные платки — далеко не лушчая идея. Лучше всё сделать на одной платке, и силовые линии сделать потолще.

Источник

Оцените статью