Драйвер для матрицы своими руками

LED-драйверы задней подсветки ЖК панелей. Схемотехника на примере ИМС ADD5201

Буквально несколько лет назад в качестве задней подсветки ЖК панелей широко применялись флуоресцентные лампы различных типов (CCFL — Cold Cathode Fluorescence Lamp, EEFL — External Electrode Fluorescent Lamp). В настоящее время практически все панели, за очень редким исключением, в качестве источника света задней подсветки используют белые светодиоды (White LED — WLED). Так как размеры светодиодов малы, то для создания светового потока соответствующей мощности требуется большое количество светодиодов, как правило, исчисляемое несколькими десятками. Чаще всего их размещают на подложке в виде узкой светодиодной линейки (рис. 1).

Все множество светодиодов разбивается на несколько групп последовательно включенных светодиодов — WLED-линеек. В каждой такой группе находится от 6 до 10 WLED. Таким образом, если для задней подсветки необходимо, например, 64 WLED, то их можно распределить на 8 линеек, каждая из которых будет состоять из 8 последовательно включенных светодиодов (рис. 2).

Ток каждого WLED, используемого в задней подсветке, как правило, находится в диапазоне 20…40 мА. Поэтому в каждой линейке должен протекать ток именно этой величины. Также следует напомнить, что падение напряжения на открытом WLED находится, чаще всего, в диапазоне 3…4 В. Таким образом, к WLED-линейке необходимо приложить напряжение, приблизительно равное произведению количества светодиодов на величину падения напряжения на одном из них (именно поэтому на рис. 2 указано напряжение питания 34 В).

Еще на один аспект работы задней подсветки необходимо обратить внимание — это стабилизация и регулировка тока светодиодов. Без стабилизации тока невозможно говорить о качественной подсветке, так как без обратной связи световой поток будет изменяться под действием различных факторов, например, в зависимости от температуры WLED. Потому необхо-
димо контролировать величину тока, протекающего через светодиоды, и в случае изменения тока его необходимо стабилизировать.

Теперь несколько слов о регулировке. Любой дисплей предполагает регулировку такого параметра изображения, как яркость. Регулировка яркости в ЖК панелях традиционно осуществляется изменением мощности светового потока задней подсветки, т.е. изменением яркости источника света. Поэтому в системе задней подсветки необходимо предусмотреть возможность изменения тока светодиодов в ответ на некоторое внешнее управляющее воздействие (например, вращение ручки регулировки яркости). При этом изменение тока светодиодов должно осуществляться пропорционально величине входного управляющего сигнала. Процесс регулировки яркости в зарубежной литературе называют диммингом (Dimming).

Таким образом можно отметить, что корректная работа светодиодов невозможна без соответствующего управления, осуществляемого специализированными микросхемами-контроллерами. Эти ИМС называются драйверами светодиодов (LED Driver). К функциям LED Driver также можно отнести и включение-выключение светодиодов по внешнему управляющему сигналу (рис. 3). Под термином LED Driver понимают, с одной стороны, микросхему, а с другой стороны, весь модуль, включающий и микросхему, и ее внешние элементы.

В настоящее время для управления светодиодами разработаны микросхемы LED-драйверов, выполняющие абсолютно все необходимые функции. Интегральное исполнение этих микросхем позволяет сделать схему управления LED чрезвычайно компактной.

Отметим основные функции интегральных LED-драйверов:

  • контроль (регулировка) и стабилизация тока LED;
  • программирование величины тока LED;
  • ограничение тока LED на безопасном уровне;
  • формирование, контроль и стабилизация питающего напряжения LED;
  • защита от превышения напряжения на LED;
  • термическая защита;
  • регулировка яркости LED-линеек (Dimming);
  • защита от низкого напряжения питания ИМС;
  • защита от обрыва в цепи LED-линеек.

Выше уже отмечалось, что для работы LED-подсветки требуется относительно высокое напряжение — от 20 до 40 В, в зависимости от количества светодиодов в одной линейке. Откуда берется это напряжение, ведь на ЖК панель оно не подается? Оказывается, это напряжение формирует из какого-либо низковольтного напряжения (обычно из 12 В) повышающий DC/DC-преобразователь, установленный на плате ЖК панели. Этот повышающий DC/DC-преобразователь также является элементом LED-драйвера (рис. 4). Существуют разные варианты схемотехники повышающих преобразователей для LED, но в большинстве современных ЖК панелей применяется так называемый Boost-регулятор, эквивалентная схема которого представлена на рис. 5.

Рис. 4. Структура LED-драйвера

Читайте также:  Идеи для украшения стен комнаты своими руками

В современных ИМС LED-драйверов узел DC/DC-преобразователя интегрирован в ИМС. Это позволяет значительно упростить схему подсветки за счет снижения количества внешних элементов, а также за счет использования единой схемы управления. Традиционным решением для современных LED-драйверов является интегральное исполнение силового транзистора BOOST-регу ля то ра и наличие встроенной схемы ШИМ контроллера, управляющего этим силовым транзистором (рис. 6). Такое исполнение позволяет LED-драйверу контролировать напряжение светодиодов, управлять им и осуществлять защиту от превышения данного напряжения.

Теперь перейдем к рассмотрению реальной схемы LED-драйвера. В настоящее время LED-драйверы и DC/DC-преоб ра зо ватели напряжения светодиодов физически размещаются на управляющей плате ЖК панели. Существуют и другие варианты, например, когда LED-драйвер расположен на основной плате монитора (рис. 7). Но такое решение не носит массового характера, поэтому остановимся на традиционных подходах.

Сегодня производители микросхем предлагают различные LED-драйверы в количестве, достаточном для выпуска справочника по ним на многие сотни страниц. В матрице, которая попала к автору на ремонт, для управления задней подсветкой используется контролер ADD5201, выпускаемый компанией Analog Devices. Сама же панель типа LP173WD1(TL) (N2) производится компанией LG. ИМС LED-драйвера находится недалеко от микросхемы TCON и рядом с разъемом, к которому подключается модуль задней подсветки (рис. 8).

На ЖК панель поступают цифровые данные о цвете в формате LVDS через внешний 40-контактный однорядный разъем CN1. Кроме сигналов LVDS через контакты 31-40 разъема CN1 на матрицу подаются сигналы управления LED-подсветкой.

Разъем для подключения светодиодных линеек CN2 является 9-контактным, однако два из них не задействованы. В данной модели матрицы все светодиоды объединены в пять цепочек (рис. 9).

Принципиальная электрическая схема LED-драйвера ЖК панели LP173WD1 на основе ИМС ADD5201 приведена на рис. 10. Количество внешних элементов ИМС минимально. Пояснения к принципиальной схеме представлено в виде описания назначения выводов ADD5201, приведенного в таблице. ИМС ADD5201 предназначена для управления восемью LED-линейками, в то время как в рассматриваемой схеме она управляет пятью LED-линейками. Остальные выводы, соответствующие управлению светодиодами (выв. 13-15) подключены к «земле», и неясно, то ли эти контакты не используются, то ли они могут быть задействованы для управления светодиодами, но выключены только в данной схеме.

Лучшее понимание того, как функционирует ADD5201, дает ее блок-схема, она приведена на рис. 11.

Типовые неисправности LED-подсветки на основе ИМС ADD5201

Хочется отметить, что микросхема ADD5201 достаточно часто применяется для построения драйверов, управляющих LED-подсветкой ЖК панелей. Ее можно встретить на панелях самых разных производителей и самых разных размеров. Также следует упомянуть, что из-за большой популярности этой микросхемы и ее широкого применения, количество упоминаний ADD5201 при описании неисправностей LED-подсветки достаточно велико.

При неработающей LED-подсветке, в первую очередь, необходимо обратить внимание на токовый предохранитель, установленный в цепи питания LED-драйвера (F2 на рис. 10). Сгоревший предохранитель — далеко не редкость в подобных схемах.

Если предохранитель в обрыве, то в обязательном порядке следует убедиться в исправности силового транзистора BOOST-регулятора, интегрированного в ADD5201. Типовой проблемой этого транзистора является его пробой. Убедиться в отсутствии пробоя транзистора можно измерением сопротивления между выводами 23, 24 микросхемы ADD5201 и «землей». Наличие низкого сопротивления (единицы Ом) указывает на неисправность транзистора и на необходимость замены микросхемы.

Если предохранитель цел, но LED-подсветка при этом не работает, а на светодиоды подается напряжение около 12 В (равно входному напряжению VLED), то можно говорить о неисправности микросхемы ADD5201.

Интернет-ресурсы
1. ссылка скрыта от публикации

Алексей Конягин
Журнал «Ремонт и Сервис»​

Источник

Как сделать драйвер для светодиода своими руками?

Светодиоды практичны, долговечны, эффективны и экономны. Для стабильной работы этих полупроводниковых приборов необходима подача на их выводы электротока со строго выверенными параметрами. Для этого нужен специальный светодиодный драйвер, своими руками создать который несложно.

Назначение драйверов для светодиодов

Яркость светодиодной лампы зависит от 2 параметров: тока, проходящего через нее, и идентичности характеристик полупроводников, т. к. любое несоответствие выведет детали из строя. Но современное производство не в состоянии обеспечить полностью одинаковые параметры кристаллов.

Нестабильность тока в сети 220 вольт и отличие в характеристиках приводит к деградации материала и сгоранию светодиода. Чтобы избежать этого, ставят драйвер.

Он преобразует электроток:

  • задает ему амплитуду;
  • выпрямляет – делает его постоянным;
  • подает на все элементы одинаковый ток (немного меньше максимального уровня) и не допускает их пробоя.

Ключевые особенности

Главное отличие драйвера в том, что при входном напряжении, на которое он рассчитан (например, 140-240 V), он устанавливает на светодиодах заданный уровень тока. При этом потенциал на выходе устройства может быть любым.

Читайте также:  Как сделать обивку стула своими руками

Основных характеристик у него 3:

  1. Номинальный ток. Он не должен превышать паспортное значение светодиода, иначе диоды сгорят или будут гореть тускло.
  2. Напряжение на выходе. Зависит от типа подключения полупроводников и их числа. Оно равно произведению падения потенциала 1 элемента на их количество и может меняться в широких пределах.
  3. Мощность. От правильного расчета этой характеристики зависит вся работа устройства. Для этого суммируют мощности всех элементов и добавляют 20-25% (запас на перегрузку).

У светодиодной лампы из 10 элементов по 0,5 Вт этот параметр будет равен 5W. С учетом перегрузки следует выбрать драйвер на 6-7 W.

Но 2 последних параметра (мощность потребления и выходное напряжение) напрямую зависят от спектра излучения светодиода. Например, элементы ХР-Е (красные) при 1,9-2,5 V потребляют 0,75 W, а зеленые – 1,25 W при питании в 3,3-3,9 V. Получается, что драйвер в 10 W способен запитать 7 диодов одного цвета или 12 другого.

Теория питания светодиодных ламп от 220 в

Лед-лампа, лента под потолком или подсветка в современном телевизоре являются совокупностью нескольких мощных небольших светодиодов, размещенных в пространстве нужным образом.

Для замены 60 W лампочки (по яркости свечения) понадобится около дюжины недорогих полупроводниковых приборов.

Если каждый из них способен пропускать ток в 1 А при напряжении 3,3 V, то в осветительную сеть их включить нельзя – сразу сгорят. Можно воспользоваться делителем из резисторов, но на них будет рассеиваться большая мощность. Поэтому КПД светильника будет небольшим.

Для снижения напряжения и преобразования тока в постоянный применяют драйверы. Внутри этих устройств могут быть различные стабилизаторы тока, емкостно-резистивные делители и т. д.

В схему могут входить транзисторы, микросхемы, конденсаторы и т. д. Такие преобразователи меняют напряжение и обеспечивают подачу нужного количества тока каждому элементу.

Разновидности светодиодных драйверов

Есть несколько типов преобразователей для полупроводниковых источников света. Основные типы – линейный и импульсный. Каждый из них создается для своих целей и имеет свои нюансы.

Линейный

Этот тип применяют часто. Его сборка, при наличии всех деталей, может длиться 5-10 минут. Наладка ему почти не нужна – он начинает работать сразу.

В схеме присутствует линейный стабилизатор тока, который можно представить как переменный резистор, управляемый электронной схемой.

При подаче входного напряжения оно идет на регулирующий элемент и затем на схему (КТ) контроля тока. После этого оно появляется на выходе, к которому подсоединена нагрузка. Узел КТ проверяет ток и в зависимости от этого меняет сопротивление регулирующего элемента.

Недостаток подобного устройства – низкий КПД.

Импульсный

В основе этого типа драйвера лежит другой принцип. Регулирующим элементом здесь выступают ключи с трансформатором. При подаче напряжения на обмотках начинает запасаться энергия (в магнитном поле). Ток постепенно возрастает.

Как только он достигнет нужной величины, произойдет переключение ключей. Запасенная энергия пойдет в цепь, и ток начнет уменьшаться. По достижении минимального значения вновь сработают ключи и процесс повторится.

Принцип работы устройства

Основная работа драйвера – создание на выходе заданного значения тока и его поддержание. Любая схема подобного типа состоит из нескольких частей:

  • сетевого фильтра, защищающего сеть от помех;
  • конденсаторно-резисторного (RC) или трансформаторного узла для снижения напряжения;
  • диодного моста для выпрямления;
  • стабилизатора тока.

Устройство с RC фильтром действует так:

  1. Конденсатор в сети переменного тока выполняет функции емкостного сопротивления. Вместе с мостом он образует делитель напряжения и уменьшает его до нужного предела. Резистор в его цепи служит для самозарядки.
  2. Сниженное напряжение поступает на стабилизатор тока, а с него – на светодиоды.

Трансформаторный узел представляет собой устройство ключевого или другого типа, управляемое генератором. Он может быть выполнен на специализированных микросхемах, высоковольтных ключевых транзисторах, простых элементах или на ШИМ контроллере.

Такой драйвер работает следующим образом:

  • при подаче питания мост выпрямляет его, и оно идет на ключи, на которых с помощью обмоток создаются противофазные напряжения;
  • одновременно с ними включается генератор, который вырабатывает импульсы и запускает драйвер;
  • ключи, включаясь попеременно, обеспечивают бесперебойную работу устройства через цепь обратной связи;
  • на выходной обмотке возникает переменное напряжение, выпрямляемое мостом или 1-2 диодами вместе с электролитическими конденсаторами;
  • далее в цепи стоит стабилизатор тока, к которому подключают светодиоды.

Характеристики и отличия от блоков питания led ленты

Нельзя применить вместо преобразователя простой БП, рассчитанный на те же напряжение и ток. Хотя оба устройства (драйвер и блок led ленты) выполняют почти одну и ту же функцию – существенные различия есть.

Читайте также:  Дневник для гимнастики своими руками

Простой БП преобразует напряжение и выдает постоянный ток. Элементы ленты, подключаемые к нему, состоят из светодиода и резисторов. Таких узлов в ленте может быть много.

Управлять свечением полупроводника трудно, т. к. оно зависит от изменения величины тока, а он в данном узле постоянный. Для увеличения или изменения яркости в светодиодной ленте придется одновременно регулировать все резисторы, а это нереально.

Драйвер является стабилизатором тока. Светодиоды подключены к нему последовательно. Поскольку в любой стабилизатор можно вставить регулирующий элемент, то яркость полупроводников получится свободно менять. Для этого следует лишь поднять или опустить общую величину силы тока.

Изготовление драйвера для светодиодов своими руками

Если в наличии пользователя есть несколько полупроводниковых кристаллов или линейка подсветки из старого телевизора, он может самостоятельно сделать источник тока для них.

Для этого следует приобрести приборы и детали или выпаять радиоэлементы из старой аппаратуры. Часто КПД устройств, сделанных своими руками, намного выше, чем у промышленных образцов.

Материалы и инструменты для работы

Для самодельного простого драйвера потребуются:

  • конденсаторы: простой 0,27 мкф на 400 V и 2 электролитических 500×16 V и 100×16 V;
  • резистор 500 кОм на 0,5 W;
  • 4 диода или готовый мост на 220 V;
  • микросхема LM317;
  • паяльник мощностью 20-40 Вт;
  • флюс и припой (желательно типа ПОС);
  • пассатижи, кусачки, плоскогубцы;.
  • многожильные изолированные проводники из меди сечением 0,35-1 мм²;
  • трубка термоусадочная;
  • мультиметр или тестер;
  • изолента;
  • плата для распайки элементов.

Схемы простого драйвера для светодиода 1 Вт и мощного

Классический преобразователь представляет собой сочетание электронного делителя напряжения и микросхемы-стабилизатора. Первый узел состоит из 2 элементов (конденсатора 0,27 мкф и резистора 500 кОм), соединенных параллельно, к которым последовательно подключен мост из диодов, выдерживающих входное напряжение.

Для сглаживания пульсаций устанавливают 2 «электролита». Первый из них 500×16 V паяют сразу после моста. Затем монтируют стабилизатор тока. За ним второй конденсатор 100×16 V.

В качестве стабилизатора часто применяют микросхему L7812, но это не совсем правильное решение. Она является линейным устройством, регулирующим напряжение, и при изменении тока может сгореть.

Схема подключения

Лучше воспользоваться микросхемами LM317, LM338 или LM350, у которых есть защита от КЗ и перегрева. Питать их можно любым напряжением 5-35 V. К драйверу можно подсоединить 5-10 светодиодов.

Схема подключения проста:

  • плюс делителя идет на вход микросхемы (1 вывод);
  • общий провод через анод светодиода идет на минус радиодетали (среднюю ножку);
  • туда же через резистор, ограничивающий ток, подключен выход LM317 (3 контакт).

Установив вместо последнего элемента регулируемое сопротивление, можно изменять силу тока, т. е. яркость светодиодов в некоторых пределах.

Если нужно соорудить мощный прожектор, то драйвер придется модифицировать:

  • необходимо поднять питающее напряжение до 24 V;
  • установить стабилизатор с наибольшим током, а из предложенных микросхем только LM338 может выдавать 5А.

Ввиду большой силы тока следует установить ее на радиатор.

Как собрать и настроить драйвер?

В простом преобразователе для светодиодов мало элементов. Драйвер можно собрать на специальной плате, куске фанеры или провести навесной монтаж.

Устройство не требует наладки, если взять все указанные детали. Главное – правильно рассчитать резистор, ограничивающий ток.

Нюансы драйвера без стабилизатора тока

Многие пользователи совсем не ставят микросхему или другой подобный узел. Но отсутствие трансформатора приводит к пульсации напряжения и тока.

Яркость светодиодов при этом тоже меняется. Частично проблему решает конденсатор, установленный после моста. Если стабилизатор не установлен, то минимальная величина пульсации составит 2-5 V.

Вариант c микросхемой позволит избавиться от проблемы. Поэтому драйвер, смонтированный своими руками, по степени пульсации не уступит зарубежным аналогам.

Правила расчета технических параметров

Работоспособность любого устройства зависит от правильно подобранных компонентов. Поэтому необходимо знать, как рассчитывать каждый элемент драйвера.

Емкость гасящего конденсатора определяют по формуле:

С(мкФ) = 3200*I нагрузки/√(Uвход²-Uвыход²)

Например, для светодиодов с током 300 mA :

С(мкФ) = 3200* 300 /√(220²-24²) = 4,367 мкф.

Величина ограничивающего сопротивления прямо пропорциональна количеству потребляемого тока:

  • 500 mA – 2,5 Ом;
  • 250 mA – 5 Ом;
  • 125 mA – 10 Ом.

Зная эти величины, можно рассчитать резистор для любого количества светодиодов.

Срок службы устройства

Длительность работы драйвера зависит от разных параметров. Это напряжение и ток нагрузки, качество использованных деталей, правильный расчет и многое другое. Общий срок службы устройства может составить от 1 года до нескольких десятков лет.

Источник

Оцените статью