- Мощный Стирлинг своими руками это миф
- Двигатель била своими руками
- Самоделки из двигателя стиральной машины
- Подключение двигателя стиральной машины
- Двигатель от старой стиральной машины для токарного станка
- Зернодробилка из стиральной машины
- Наждак из двигателя от стиральной машины
- Газонокосилка из мотора стиральной машины
- Двигатель от стиралки для бетономешалки
- Вибростол своими руками
- Как сделать зернодробилку из стиральной машины
- Преимущества зернодробилки
- Как сделать зернодробилку из двигателя стиральной машины: инструкция
- Инструменты и комплектующие для сборки
- Порядок выполнения работ
- Как установить решетку
- Как подключить двигатель
- Как работает самодельная зернодробилка
- СТИРЛИНГИ
- Электромобиль своими руками
- Электромобиль своими руками
Мощный Стирлинг своими руками это миф
Это как инопланетяне: никто не видел, но многие верят в их существование.
После публикации статей о паровом двигателе посыпались советы «лучше сделай этот самый двигатель».
Название видимо красивое, других объяснений популярности идеи лично у меня нет:
ещё несколько лет назад, предметно «прокуривая» интернет на данную тему, видел только модельки из консервных банок и лазерных дисков, кое-как вращающие сами себя
Может быть что-то изменилось? что же, Яндекс в помощь:
Нагляднее всего конечно же картинки. Лазерный диск, консервная банка, банка от кока-колы. Все двигатели — на подставке, т.е. для «настольной демонстрации»
Повторюсь — речь идет о возможности изготовления мощного двигателя Стирлинга своими руками , а не о промышленных образцах «пару киловатт» за многие сотни тысяч рублей
Нашлась одна статья, где какой-то буржуин озадачился на несколько лет изготовлением 700Вт двигателя, но судя по фото — всё это время на него работало ползавода:
Кому интересно — ссылка на этот сайт в конце текста. Лично я не готов тратить несколько лет на изготовление устройства мощностью 700Вт, да и нет у меня такого набора необходимого высокоточного оборудования.
Большинство остальных ссылок по-прежнему, как и несколько лет назад, пестрят рекомендациями:
Кто-нибудь видел мощный (хотя бы от 500 Вт) двигатель Стирлинга, сделанный своими руками? Поделитесь ссылкой на то, как его изготовить в условиях домашней мастерской.
Источник
Двигатель била своими руками
Самоделки из двигателя стиральной машины
Подключение двигателя стиральной машины
Для подключения двигателя к переменному току, выполняем следующие действия:
1. Для начала нужно приготовить тестер – это специальное устройство, служащее для определения проводов обмотки.
2. Для определения пары проводов щуп тестера подключаем на любой провод и один за другим проверяем все остальные. Если во время подключения тестером было обозначено соединение, то это и будет парой проводов. Соответственно другие два провода будут также составлять пару.
3. Измеряем уровень сопротивления двух обмоток. Обмотка с большим показателем – пусковая.
4. От разных обмоток провода соединяются попарно, затем подключаются к сети 220 В.
5. Выключатель рекомендуется устанавливать на провод пусковой обмотки.
В некоторых случаях направление, в котором вращается мотор, следует изменить. Здесь мы меняем местами выводы пусковой обмотки.
Двигатель от старой стиральной машины для токарного станка
Самостоятельно собрать токарный станок – это дело не сложное. Требуется лишь на основе вала мотора от старой стиральной машинки зафиксировать переходник. Переходник не стоит закреплять капитально. Лучше, чтобы он был съемным, поскольку так токарный станок станет многофункциональным, с возможностью вытачивать детали, точить ножи – точильным кругом, заниматься резкой металла и пластиковых труб с помощью отрезного круга, пользоваться другими насадками. На фото представлены возможные насадки.
Не стоит фиксировать данную самоделку на прочной основе. Чтобы работа была более удобной, ее рекомендуется сделать переносной. Основой послужит толстая прочная доска. Для закрепления получившегося токарного станка рекомендуется использовать скобы, которые прикручиваются на основу с помощью болтов от стиральной машины. Может использоваться обычный выключатель, или от стиральной машинки.
Зернодробилка из стиральной машины
С этой полезной самоделкой можно существенно сэкономить на заготовке кормов для домашней живности. Если подобрать двигатель достаточной мощности, вполне реально собрать корморезку, зернодробилку и траворезку, которая в работе не будет уступать заводским моделям. В этом случае рекомендуется использовать двигатель от автоматической стиральной машины – они как раз отличаются более высокой мощностью.
Чтобы превратить старую стиральную машинку в корморезку, не нужны длительные работы. Требуется взять двигатель от машины-автомат и корпус от другой старой стиральной машинки – с верхней загрузкой. Такой корпус найти достаточно просто – в пункте приема металлолома такой стоит гроши.
Пошаговое описание создания корморезки своими руками:
1. Лопасти с ножами должны иметь такой диаметр, при котором они не будут совсем немного доходить до краев корпуса.
2. Проделываем в нижней части отверстие, чтобы удалять готовый корм.
3. Устанавливаем одну лопасть с ножами в нижней части корпуса, другую – на 40–50 см от верхнего края; чтобы качество помола было лучше, для ножей нужно применять 2 разных вала, они должны вращаться в разные стороны.
4. Прикручиваем двигатель на крышку стиральной машинки и присоединяем его к валам.
5. Вырезаем в крышке отверстие, чтобы засыпать сырье.
6. Устанавливаем крышку на место и тестируем самоделку в деле.
Такой самодельный аппарат будет функционировать не хуже, чем заводской, и позволит получать качественно перемолотый корм.
Наждак из двигателя от стиральной машины
Наждачный станок пригодится практически для любого хозяйства.
Он может быть изготовлен в простой способ – для этого достаточно приготовить двигатель от автоматической стиральной машинки в рабочем состоянии.
Когда вы будете крепить точильный камень на двигатель, могут возникнуть некоторые трудности – отверстие камня может не совпадать с диаметром вала электрического мотора.
В таком случае нужно брать дополнительную деталь, которую нужно будет специально выточить. Этот переходник легко делается любым токарем, нужно только сообщить ему диаметр вала.
Помимо переходника, в наличии нужно иметь специальный болт, гайку, шайбу.
Резьба на гайке должна нарезаться зависимо от того, в какую сторону будет вращаться мотор.
Чтобы двигатель вращался по часовой стрелке, должна быть нарезана левосторонняя резьба, для вращения против часовой – резьба должна быть правосторонней.
Если делать наоборот, то в работе камень будет постоянно раскручиваться и слетать.
Может быть так, что у вас есть гайка, но направление резьбы – неподходящее. Тогда мы изменяем направление вращения. В этом случае мы меняем местами провода обмотки.
Подключаем рабочую обмотку к сети 200 В, подключаем пусковую пару к рабочей катушке.
Второй конце на короткое время прикладываем к выводу обмотки. Коллекторный электрический мотор начнет двигаться в одну из сторон.
Когда места выводов пусковой обмотки сменятся, направление движения мотора поменяется на противоположное.
Направление вращения мотора можно изменить без использования конденсатора. Здесь после подключения рабочей обмотки к 220 В камень резко прокручиваем в нужную сторону.
После этого мотор запускается и станок начинает работать.
Газонокосилка из мотора стиральной машины
Газонокосилка является другим примером, как можно грамотно использовать мотор от стиральной машины. Этот агрегат будет очень полезным, если у вас есть дачный или приусадебный участок. Чтобы изготовить газонокосилку, не нужно много деталей, все материалы найдутся среди домашних запасов в гараже или мастерской.
Двигатель от стиралки для бетономешалки
Во время строительных или ремонтных работ часто нужно изготовлять бетонную смесь, при этом аренда бетономешалки становится невыгодной. В таком случае есть смысл собрать бетономешалку своими руками – она будет отлично делать замес.
Вибростол своими руками
Используя двигатель от стиральной машины, мы можем изготовить вибростол для тротуарной плитки.
Оборудование такого типа конструируется в достаточно простой способ. Самодельный вибростол выполнен в виде плиты, которая является верхней частью приспособления, прикрепленной на металлическое основание с помощью подвижного соединения, с двигателем с эксцентриком от стиральной машины. Во время вибрирования плиты, из бетона, который залит в формы на этой плите, выходят пузырьки воздуха и исчезают пустоты. Благодаря этому готовые изделия отличаются высокой прочностью и качеством.
Как сделать зернодробилку из стиральной машины
Дробилка для зерна всегда пригодится, особенно тем, кто держит домашний скот. Зачем тратить время на изготовление корма вручную, если можно сделать зернодробилку из стиральной машины.
С помощью этого аппарата вы сможете получить кукурузную и пшеничную муку, а также перерабатывать овощи. Так вы не только сэкономите средства, но и подарите вторую жизнь старой стиральной машине.
Преимущества зернодробилки
Почему бы не купить зерновую мельницу в магазине? Сначала оцените преимущества самоделки:
- Полезное применение старой техники.
- Минимальная переделка стиральной машины, обойдется практически бесплатно.
- С помощью самодельной крупорушки вы сможете перерабатывать ячмень, рожь, зерно, бобовые, лузгу. Если установить дисковую терку, то можно получить измельчитель для овощей, фруктов и корнеплодов.
- Конструкция проста в управлении.
Недостаток лишь в том, что нужно подобрать некоторые детали и потратить свое время.
Как сделать зернодробилку из двигателя стиральной машины: инструкция
Для изготовления зернодробилки своими руками идеально подойдет советская стиральная машина «Ока» или другая модель с цилиндрическим баком.
Прежде чем сделать устройство, рассмотрим принцип его работы.
Конструкция проста и работает по технологии кофемолки, перемалывая зерно. Вместо активатора в стиралке устанавливаются ножи или лопасти, которые позволяют перерабатывать культуры. Снаружи приделывается воронка. Через ее отверстие перемолотый фураж высыпается в емкость.
Целое зерно не попадет в емкость, поскольку в конструкции устанавливается мелкая сетка.
Инструменты и комплектующие для сборки
Сборка конструкции облегчается тем, что не нужно использовать сварочный аппарат и токарный станок. Инструмент, который вам потребуется:
- болгарка;
- дрель со сверлами;
- пассатижи;
- зубило;
- молоток;
- гаечные и торцевые ключи;
- гайки;
- болты;
- наждак;
- секатор.
- металлическая мелкофракционная решетка, желательно, с секциями не более 3 мм;
- втулка;
- фланец;
- резиновая и жестяная прокладка;
- стальные пластины (1,5х20 мм, толщина 1,5 мм).
Прежде чем самому приняться за изготовление зернодробилки, изучите подробный чертеж устройства.
Размеры аппарата индивидуальны. Все зависит от габаритов стиральной машины.
Порядок выполнения работ
Подготовленные стальные пластины заточите при помощи наждака. Чтобы надеть их на шкив, нужно изготовить специальный фланец, который закрепит ножи.
Далее действуйте так:
- В центре ножей проделайте отверстия диаметром 6 мм. Наденьте их на шкив.
- Теперь нужно изготовить защиту, чтобы мука не попадала в механизм.
- Из куска жести изготовьте заплатку, которой нужно закрыть втулку. Сверху конструкция закрывается резиновой прокладкой. Для большей герметичности можно воспользоваться герметиком.
Теперь нужно подготовить воронку для вывода муки. Ее подсоединяют к сливу – для этого нужно расширить отверстие до 12-15 см. Сделайте это с помощью молотка и зубила.
В подготовленное отверстие установите патрубок либо отрезок трубы соответствующего диаметра. Отвод для фуража готов. Нужно заняться установкой решетки.
Как установить решетку
Решетка должна находиться в баке под углом 15 градусов. При этом она должна плотно соприкасаться со стенками бака. Сделать это достаточно непросто:
- Выясните, на какую высоту будут подниматься ножи при вращении. Сделайте пометку.
- Отступите от пометки вверх на несколько миллиметров.
- Затем подготовьте решетку, которая по диаметру соответствует размерам бака.
- Установите решетку на отмеченной линии, следите, чтобы не было зазоров, иначе зерно будет проскакивать.
- Закрепите решетку на месте болтами с гайками.
- Если во время установки образовались небольшие щели, замажьте их холодной сваркой и оставьте просыхать.
Для минимальной потери зерна во время загрузки, проделайте в крышке отверстие, в которое установите воронку.
Из двигателя стиральной машины сделайте пусковое устройство. Для этого нужно правильно подключить мотор к сети.
Как подключить двигатель
Из обычного асинхронного двигателя выходит 4 провода – 2 из них ведут к пусковой обмотке, 2 к рабочей обмотке. Чтобы правильно определить провода и подключить их, воспользуйтесь электрической схемой.
Также можно проверить провода тестером, который установлен в режим омметра. Для этого:
- Поочередно прикладывайте щуп тестера к каждому проводу, отыскивая парные.
- Провода, ведущие к рабочей обмотке, покажут меньшее значение.
- Соедините рабочий и пусковой провод вместе.
- Оставшиеся провода подсоедините к конденсатору или кнопке короткого импульса.
- Подсоедините провод сетевого шнура.
- Запустите и проверьте двигатель.
- Чтобы заставить двигатель вращаться в другую сторону, поменяйте местами двигатель пусковой обмотки.
Как работает самодельная зернодробилка
Запустите пустую конструкцию, проверьте работу ножей и двигателя. Если все в порядке, подставьте под вывод емкость, засыпьте ведро зерна и накройте устройство крышкой.
Получилась надежная зернодробилка для использования в быту. Со временем вам придется только заточить ножи и пользоваться аппаратом в свое удовольствие.
Теперь вы знаете, как можно дробить зерно в домашних условиях без покупки дорогой техники. Старые, ненужные детали стиральной машины всегда можно приспособить, если есть желание.
СТИРЛИНГИ
Из прошлого — в будущее! В 1817 году шотландский священник Роберт Стирлинг получил… патент на новый тип двигателя, названный впоследствии, подобно моторам Дизеля, именем изобретателя — стирлинг. Прихожане маленького шотландского местечка уже давно и с явным подозрением косились на своего духовного пастыря. Еще бы! Шипение и грохот, проникавшие через стены сарая, где частенько пропадал отец Стирлинг, могли смутить не только их богобоязненные умы. Ходили упорные слухи, что в сарае содержится страшный дракон, которого святой отец приручил и вскармливает летучими мышами и керосином.
Но Роберта Стирлинга, одного из просвещеннейших людей Шотландии, не смущала неприязнь паствы. Мирские дела и заботы все больше и больше занимали его, в ущерб служению господу: увлекали пастора… машины.
Британские острова в тот период переживают промышленную революцию: стремительно развиваются мануфактуры. И служители культа не остаются равнодушными к громадным доходам, которые сулит новый способ производства.
С благословения церкви и не без помощи фабрикантов несколько машин Стирлинга были построены, и лучшая из них, в 45 л. с., три года проработала на шахте в Дунди.
Дальнейшее развитие Стирлингов задержалось: в 60-х годах прошлого столетия на арену вышел новый двигатель Эриксона.
В обеих конструкциях было много общего. Это были двигатели внешнего сгорания. И в той и в другой машине рабочим телом был воздух, и в той и в другой основой двигателя являлся регенератор, проходя через который отработанный горячий воздух отдавал все тепло. Свежая же порция воздуха, просачиваясь через плотную металлическую сетку, отбирала это тепло, перед тем как попасть в рабочий цилиндр.
По схеме на рисунке 1 можно проследить, как воздух через всасывающую трубу 10 и клапан 4 попадает в компрессор 3, сжимается и через клапан 5 выходит в промежуточный резервуар. В это время золотник 8 перекрывает выхлопную трубу 9, и воздух через регенератор попадает в рабочий цилиндр 1, нагреваемый топкой 11. Здесь воздух расширяется, совершая полезную работу, которая частично направлена на поднимаемый тяжелый поршень, частично — на сжатие холодного воздуха в компрессоре 3. Опускаясь, поршень выталкивает отработанный воздух через регенератор 7 и золотник 8 в выхлопную трубу. При опускании поршня в компрессор засасывается свежая порция воздуха.
Рис. 1. Схема двигателя внешнего сгорания (Эриксона):
1 — рабочий цилиндр, 2 — поршень; 3 — компрессор; 4 — всасывающий клапан; 5 — нагнетательный клапан; 6 — промежуточный резервуар; 7 — регенератор; 8 — перепускной золотник; 9 — выхлопная труба; 10 — всасывающая труба; 11 —топка.
И та и другая конструкции не отличались экономичностью. Зато неполадок с двигателем шотландца случалось почему-то больше, и он был менее надежным, чем двигатель Эриксона. Быть может, именно поэтому просмотрели одну очень важную деталь: при равных мощностях двигатель Стирлинга был компактнее. Кроме того, он имел существенное преимущество в термодинамике…
Сжатие, нагрев, расширение, охлаждение — вот четыре основных процесса, необходимых для работы любого теплового двигателя. Каждый из них можно проводить разными путями. Скажем, нагрев и охлаждение газа можно вести в замкнутой полости постоянного объема (изохорный процесс) или под движущимся поршнем при постоянном давлении (изобарный процесс). Сжатие или расширение газа может происходить при постоянной температуре (изотермический процесс) или без теплообмена с окружающей средой (адиабатический процесс). Составляя замкнутые цепочки из различных комбинаций таких процессов, нетрудно получить теоретические циклы, по которым работают все современные тепловые двигатели. Скажем, комбинация из двух адиабат и двух изохор образуют теоретический цикл бензинового мотора. Если заменить в нем изохору, по которой идет нагревание газа, изобарой — получится цикл дизеля. Две адиабаты и две изобары дадут теоретический цикл газовой турбины. Среди всех мыслимых циклов комбинация из двух адиабат и двух изотерм играет особо важную роль в термодинамике, так как по такому циклу — циклу Карно — должен работать двигатель с самым высоким к.п.д.
Если в двигателе Стирлинга подвод тепла производился по изохорам, то у Эриксона этот процесс происходил по изобаре, а процессы сжатия и расширения протекали по изотермам.
В начале нашего века движки Эриксона небольшой мощности (порядка 10—20 л. с.) нашли применение в различных странах. Тысячи таких установок трудились на фабриках, в типографиях, шахтах и рудниках, крутили валы станков, качали воду, поднимали лифты. Под названием «тепло и сила» они были известны и в России.
Предпринимались попытки сделать большой судовой двигатель, но результаты испытаний обескураживали не только скептиков, но и самого Эриксона. Вопреки пророчествам первых судно «сдвинулось с места» и даже пересекло Атлантический океан. Но и ожидания изобретателя были обмануты: четыре гигантских по размерам двигателя вместо 1000 л. с. развили всего 300 л. с. Расход угля получился такой же, как и у паровых машин. К тому же днища рабочих цилиндров к концу рейса прогорели насквозь, и в Англии двигатели пришлось снять и тайком заменить обычной паровой машиной. В довершение всех несчастий на обратном пути в Америку судно потерпело аварию и погибло со всем экипажем.
Рис. 2. Схема работы современного двигателя Стирлинга:
1 — рабочий поршень 2 — поршень-вытеснитель; 3 — охладитель; 4 — нагреватель; 5 — регенератор; 6 — холодное пространство; 7 — горячее пространство.
Отказавшись от мысли строить «калорические машины» большой мощности, Эриксон наладил массовый выпуск небольших двигателей. Дело в том, что уровень науки и техники того времени не позволял спроектировать и построить экономичную и мощную машину.
Но главный удар Эриксону нанесли изобретатели двигателя внутреннего сгорания. Бурное развитие дизелей и карбюраторных двигателей заставило предать забвению хорошую идею.
…Прошло столетие. В 30-х годах одно из военных ведомств поручает фирме «Филипс» разработать энергоустановку мощностью 200—400 вт для походной радиостанции. Причем двигатель должен быть всеядным, то есть работать на любом виде топлива.
Специалисты фирмы со всей основательностью принялись за дело. Начали с исследований различных термодинамических циклов и, к своему удивлению, обнаружили, что теоретически самый экономичный — давно забытый двигатель Стирлинга.
Война приостановила исследования, но в конце 40-х годов работы были продолжены. И тогда в результате многочисленных экспериментов и расчетов было сделано новое открытие — замкнутый контур, в котором под давлением около 200 атм. циркулировало рабочее тело (водород или гелий, как обладающие наименьшей вязкостью и наибольшей теплоемкостью). Правда, замкнув цикл, инженеры вынуждены были позаботиться об искусственном охлаждении рабочего тела. Так появился охладитель, которого не было у первых двигателей внешнего сгорания. И хотя нагреватель и охладитель, как бы компактны они ни были, утяжеляют стирлинг, зато сообщают ему одно очень важное качество.
Изолированные от внешней среды, они практически не зависят от нее. Стирлинг может работать от любого источника тепла всюду: под водой, под землей, в космосе — то есть там, где двигатели внутреннего сгорания, нуждающиеся в воздухе, работать не могут. В таких условиях без нагревателей и охладителей, передающих тепло через стенку, в принципе нельзя обойтись. И тут-то стирлинг побивают своих соперников даже по весу. У первых опытных образцов удельный вес на единицу мощности был порядка 6—7 кг на л. с., как у судовых дизелей. Современные стирлинги имеют еще меньшее соотношение — 1,5—2 кг на л. с. Они еще более компактны и легки.
Итак, схема стала двухконтурной: один контур с рабочим агентом и второй — подвод тепла; это позволило довести энергосъем до 200 л. с. на литр рабочего объема, а к.п.д. — до 38—40 процентов. Для сравнения: современ-
ные дизели имеют к.п.д. 34—38 процентов, а карбюраторные двигатели — 25—28. Кроме того, процесс сгорания топлива у стирлинга непрерывный, а это резко снижает токсичность — по выходу окиси углерода в 200 раз, по окиси азота — на 1—2 порядка. Вот где, возможно, одно из радикальных решений проблемы загрязнения атмосферы городов.
Рабочая часть современного Стирлинга представляет собой замкнутый объем, заполненный рабочим газом (рис. 2). Верхняя часть объема — горячая, она непрерывно нагревается. Нижняя — холодная, все время охлаждается водой. В том же объеме — цилиндр с двумя поршнями: вытеснителем и рабочим. Когда поршень идет вверх, газ в объеме сжимается; вниз — расширяется. Движением же вверх-вниз поршня-вытеснителя производится попеременное распределение нагретого и охлажденного газа. Когда поршень-вытеснитель находится в верхнем положении (в горячем пространстве), большая часть газа оказывается вытесненной в холодную зону. В это время рабочий поршень начинает двигаться вверх и сжимает холодный газ. Теперь поршень-вытеснитель устремляется вниз до соприкосновения с рабочим поршнем, и сжатый холодный газ перекачивается в горячее пространство. Расширение нагреваемого газа — рабочий ход. Часть энергии рабочего хода запасается на последующее сжатие холодного газа, а избыток идет на вал двигателя.
Регенератор находится между холодным и горячим пространствами. Когда расширившийся горячий газ движением поршня-вытеснителя перекачивается в холодную часть, он проходит через плотный пучок тонких медных проволочек и отдает им содержащееся в нем тепло. Во время обратного хода сжатый холодный воздух, прежде чем попасть в горячую часть, отбирает это тепло обратно.
Рис. 3. Устройство современного Стирлинга:
1 — топливная форсунка; 2 — выхлоп охлажденных газов, 3 — воздухонагреватель; 4 — выход горячих газов; 5 — горячее пространство; 6 — регенератор; 7 — цилиндр; 8 — трубки охладителя; 9 — холодное пространство; 10 — рабочий поршень; 11 — ромбический привод; 12 — камера сгорания; 13 — трубки нагревателя; 14 — поршень-вытеснитель; 15 — впуск воздуха для сжигания топлива; 16 — буферная полость.
Конечно, в реальной машине все выглядит не так просто (рис. 3). Невозможно быстро нагреть газ через толстую стенку цилиндра, для этого нужна гораздо большая поверхность нагрева. Вот почему верхняя часть замкнутого объема превращается в систему тонких трубок, нагреваемых пламенем форсунки. Чтобы как можно полнее использовать теплоту продуктов сгорания, холодный воздух, подводящийся к форсунке, предварительно подогревается выхлопными газами — так появляется довольно сложный контур сгорания.
Холодная часть рабочего объема — тоже система трубок, в которые нагнетается охлаждающая вода.
Под рабочим поршнем — замкнутая буферная полость, наполненная сжатым газом. Во время рабочего хода давление в этой полости повышается. Запасаемой при этом энергии достаточно для того, чтобы сжать холодный газ в рабочем объеме.
По мере совершенствования неудержимо росли температура и давление. 800° по Цельсию и 250 атм. — это весьма трудная задача для конструкторов, это поиски особо прочных и термостойких материалов, сложная проблема охлаждения, так как выделение тепла по сравнению с классическими двигателями здесь в полтора-два раза больше.
Результаты этих экспериментов порой приводят к самым неожиданным находкам. К примеру, специалисты фирмы «Филипс», обкатывая свой движок на холостом ходу (без нагрева), заметили, что головка цилиндра сильно охлаждается. Совершенно случайно обнаруженный эффект повлек за собой целую серию разработок, и в итоге рождение новой холодильной машины. Сейчас такие высокопроизводительные и малогабаритные холодильные агрегаты широко используются во всем мире. Но вернемся к тепловым машинам.
Последующие события нарастают как снежный ком. В 1958 году с приобретением лицензий другими фирмами стирлинг шагнул за океан. Его стали испытывать в самых различных областях техники. Разрабатывается проект применения двигателя для питания аппаратуры космических кораблей и спутников. Для полевых радиостанций создаются энергоустановки, работающие на любом виде топлива (мощностью порядка 10 л. с.), обладающие настолько малым уровнем шума, что его не слышно за 20 шагов.
Громадную сенсацию вызвала демонстрационная установка, работающая на двадцати видах топлива. Без отключения двигателя, простым поворотом крана, в камеру сгорания поочередно подавали бензин, солярку, сырую нефть, оливковое масло, горючий газ — и машина прекрасно «съедала» любой «корм». В зарубежной печати были сообщения о проекте двигателя на 2,5 тысячи л. с. с атомным реактором. Предполагаемый к.п.д. 48—50%. Значительно уменьшаются все габариты энергоблока, что позволяет высвободившиеся вес и площадь отдать под биологическую защиту реактора.
Еще одна интересная разработка — привод для искусственного сердца весом 600 г и мощностью 13 вт. Слаборадиоактивный изотоп обеспечивает ее практически неисчерпаемым источником энергии.
Двигатель Стирлинга испытывался на некоторых автомобилях. По своим рабочим параметрам он не уступил карбюраторному, а уровень шумов и токсичность выхлопных газов значительно снизились.
Автомобиль со стирлингом может работать на любом виде .топлива, а при необходимости — на расплаве. Представьте: перед тем как въехать в город, водитель включает горелку и расплавляет несколько килограммов окиси алюминия или гидрида лития. По городским улицам он едет «не дымя»: двигатель работает от тепла, запасенного расплавом. Одна из фирм изготовила мотороллер, в бак которого заливается около 10 литров расплава фтористого лития. Такой зарядки хватает на 5 часов работы при мощности движка 3 л. с.
Работы над Стирлингами продолжаются. В 1967 году изготовлен образец опытной установки мощностью 400 л. с. на один цилиндр. Проводится комплексная программа, согласно которой к 1977 году планируется серийное производство двигателей с диапазоном мощности от 20 до 380 л. с. В 1971 году «Филипс» выпустила четырехцилиндровый промышленный двигатель в 200 л. с. с полным весом 800 кг. Уравновешенность его настолько высока, что поставленная ребром на кожух монета (размером в пятак) стоит не шелохнувшись.
К достоинствам нового типа двигателя можно отнести и большой моторесурс порядка 10 тыс. час. (есть отдельные данные о 27 тыс.), и плавность работы, так как давление в цилиндрах нарастает плавно (по синусоиде), а не взрывами, как у дизеля.
Перспективные разработки новых моделей проводятся и у нас. Ученые и инженеры трудятся над кинематикой различных вариантов, на электронно-вычислительных машинах просчитывают различные виды «сердца», стирлинга-регенератора. Идет поиск новых инженерных решений, которые лягут в основу экономичных и мощных двигателей, способных потеснить привычные дизели и бензиновые моторы, исправив тем самым несправедливую ошибку истории.
Электромобиль своими руками
Электромобиль своими руками
Электромобиль своими руками
- BLDC-мотор (безщёточный безредукторный мотор на постоянных магнитах, требуемой мощности)
- Контроллер такой же мощности. Контроллер — это сложное электронное устройство, которое:
— преобразует постоянный ток из батареи в 3-х фазный переменный для питания мотор-колеса,
— является регулятором уровня мощности (скорости), подаваемой в мотор, в зависимости от положения ручки газа.
Про типы BLDC-контроллеров можете прочитать по этой ссылке.
- Батарея (аккумуляторная батарея, собранная из ячеек и соединённых с БМС (платой защиты ячеек от презарядапереразряда). Чаще всего используют тяговые литий-железо-фосфатные ячейки, которые выглядят так.
- Управление:педаль газа либо ручка газа, тормозные рычаги (электронный тормоз), кнопка круиз-контроля (постоянная зафиксированная скорость), кнопка реверса (обратный ход). Педаль/ручка газа является обязательной, остальные — вспомогательные.
- Какая средняя скорость планируется?
- Какая максимальная скорость во время разгона?
- Вес электромобиля (с батареей, водителем и пассажирами)?
- Угол наклона дороги? Горная местность резко повышает требование в мощности мотора!
- Площадь поперечного сечения автомобиля и его обтекаемость.
- Диаметр колеса (от края покрышки до края) для правильного расчета коэффициента редукции (для тихоходных средств с редуктором).
- Ускорение: Если Вам в гонках важен старт с места (к примеру, 100 км/ч за 4 сеунды). Для этих расчетов нужны другие формулы, будет в следующей статье.
- Стиль вождения: спокойныйспортивный, городскоймежгород.
- Дальность пробега.
Сx=0,342 (коэффициент аэродинамического сопротивления);
S=2м 2 (площадь поперечного сечения автомобиля);
g = 9.81 м/с 2 (ускорение свободного падения);
m=1000 кг (масса автомобиля);
Fтр= 0,018 (коэффициент силы трения для асфальта);
V 3 -(куб скорости автомобиля в м/с); 60 км/ч =16,67 м/с (переводим скорость из «км/ч» в «м/с» делением на 3,6);
α= 0° (угол наклона дороги);
ρв=1,225 кг/м 3 (плотность воздуха).
W= g * Fтр * m * V *cosα + 0,5*Сx * S * ρв*V 3 + g * m * sinα*V
W = 9,8 * 0,018 * 1000 * 16,67*1 + 0,5*0,342 * 2* 1,225*(16,67) 3 + 9,8 * 1000 * 0 = 2940+1940+0= 4 880 Вт.
Это сколько чистой энергии надо затратить на передвижение. Часть энергии теряется по пути из батареи. По этому, поделим полученный результат на общий КПД (трансмиссии (
0,95)) приблизительно равный 0,76*0,90*0,95=0,65.
Фактически из батареи надо выдать больше энергии, пока передадим эту энергию на движение, часть потеряется в узлах (на трение, теплоотдачу).
Итак, 4880 / 0,65=7509 Вт — такую мощность должна выдавать батарея.
Итого для движения по ровной дороге со скоростью 60 км/ч требуется 7509 Вт мощности системы.
Для того чтобы понять, как мощность зависит от скор ости и угла наклона дороги, произведём вычисления в Excel-е и создадим графики (*):
Источник