Гальваническая развязка аудиосигнала своими руками

Гальваническая развязка аналогового сигнала

В этой статье речь пойдет в первую очередь об оптической развязке аналогового сигнала. Будет рассматриваться бюджетный вариант. Также основное внимание уделяется быстродействию схемотехнического решения.

Способы развязки аналогового сигнала

Небольшой обзор. Существует три основных способа гальванической развязки аналогового сигнала: трансформаторный, оптический и конденсаторный. Первые два нашли наибольшее применение. На сегодняшний день существует целый класс устройств, которые называются изолирующие усилители или развязывающие усилители (Isolated Amplifier). Такие устройства передают сигнал по средствам его преобразования (в схеме присутствует модулятор и демодулятор сигнала).

Рис.1. Общая схема изолирующих усилителей.

Есть устройства как для передачи аналогового сигнала по напряжению (ADUM3190, ACPL-C87), так и специализированные, для подключения непосредственно к токовому шунту (SI8920, ACPL-C79, AMC1200). В данной статье мы не будем рассматривать дорогие устройства, однако перечислим некоторые из них: iso100, iso124, ad202..ad215 и др.

Существует также другой класс устройств – развязывающие оптические усилители с линеаризующей обратной связью (Linear Optocoupler) к этим устройствам относятся il300, loc110, hcnr201. Принцип действия этих устройств легко понять, посмотрев на их типовую схему подключения.

Рис.2. Типовая схема для развязывающих оптических усилителей.

Подробнее о развязывающих усилителях вы можете почитать: А. Дж. Пейтон, В. Волш «Аналоговая электроника на операционных усилителях» (глава 2), также будет полезен документ AN614 «A Simple Alternative To Analog Isolation Amplifiers» от silicon labs, там есть хорошая сравнительная таблица. Оба источника есть в интернете.

Специальные микросхемы оптической развязки сигнала

Теперь к делу! Для начала сравним три специализированных микросхемы: il300, loc110, hcnr201. Подключенные по одной и той же схеме:

Рис.3. Тестовая схема для il300, hcnr201 и loc110.

Разница только в номиналах для il300, hcnr201 R1,R3=30k, R2=100R, а для loc110 10k и 200R соответственно (я подбирал разные номиналы чтобы добиться максимального быстродействия, но при этом не выйти за допустимые пределы, например, по току излучающего диода). Ниже приведены осциллограммы, которые говорят сами за себя (здесь и далее: синий – входной сигнал, желтый — выходной).

Рис.4. Осциллограмма переходного процесса il300.

Рис.5. Осциллограмма переходного процесса hcnr201.

Рис.6. Осциллограмма переходного процесса loc110.

Теперь рассмотрим микросхему ACPL-C87B (диапазон входного сигнала 0..2В). Честно говоря с ней я провозился достаточно долго. У меня в наличии было две микросхемы, после того как получил неожиданный результат на первой, со второй обращался очень аккуратно, особенно при пайке. Собирал всё по схеме, указанной в документации:

Результат один и тот же. Подпаивал керамические конденсаторы непосредственно вблизи ножек питания, менял ОУ (естественно проверял его на других схемах), пересобирал схему и т.д. В чем собственно загвоздка: выходной сигнал имеет значительные флуктуации.

Читайте также:  Как сделать стартер для лебедки своими руками

Несмотря на то, что производитель обещает уровень шума выходного сигнала 0.013 mVrms и для варианта «B» точность ±0.5%. В чем же дело? Возможно ошибка в документации, поскольку с трудом верится в 0.013 mVrms. Непонятно. Но посмотрим в графу Test Conditions/Notes напротив Vout Noise и на Рис.12 документации:

Рис.9. Зависимость уровня шума от величины входного сигнала и частоты выходного фильтра.

Здесь картина немного проясняется. Видимо производитель говорит нам о том, что мы можем задушить эти шумы через ФНЧ. Ну что ж, спасибо за совет (иронично). Зачем вот только всё это таким хитрым образом вывернули. Скорее всего понятно зачем. Ниже приведены графики без и с выходным RC фильтром (R=1k, C=10nF (τ=10µS))

Рис.10. Осциллограмма переходного процесса ACPLC87 без и с выходным фильтром.

Применение оптопар общего назначения для развязки сигнала

Теперь перейдем к самому интересному. Ниже приведены схемы, которые я нашел в интернете.

Рис.11. Типовая схема оптической развязки аналогового сигнала на двух оптопарах.

Рис.12. Типовая схема оптической развязки аналогового сигнала на двух оптопарах.

Рис.13. Типовая схема оптической развязки аналогового сигнала на двух оптопарах.

Такое решение имеет как преимущества, так и недостатки. К преимуществу отнесем большее напряжение изоляции, к недостаткам то, что две микросхемы могут значительно отличаться по параметрам, поэтому кстати рекомендуется использовать микросхемы из одной партии.

Я собрал эту схему на микросхеме 6n136:

Рис.14. Осциллограмма переходного процесса развязки на 6N136.

Получилось, но медленно. Пробовал собирать и на других микросхемах (типа sfh615), получается, но тоже медленно. Мне надо было быстрее. К тому же часто схема не работает из-за возникающих автоколебаний (в таких случаях говорят САР неустойчива))) Помогает увеличение номинала конденсатора С2 рис. 16.

Один знакомый посоветовал отечественную оптопару АОД130А. Результат на лицо:

Рис.15. Осциллограмма переходного процесса развязки на АОД130А.

Рис.16: Схема развязки на АОД130А.

Потенциометр нужен один (RV1 или RV2) в зависимость от того будет выходной сигнал меньше или больше входного. В принципе можно было поставить только один RV=2k последовательно с R3=4.7k, ну или вообще оставить только RV2=10k без R3. Принцип понятен: иметь возможность подстройки в районе 5k.

Микросхема трансформаторной развязки сигнала

Перейдем к трансформаторному варианту. Микросхема ADUM3190 в двух вариантах на 200 и 400 кГц (у меня на 400 — ADUM3190TRQZ), также есть микросхема на более высокое напряжение изоляции ADUM4190. Замечу, корпус самый маленький из всех – QSOP16. Выходное напряжение Eaout от 0.4 до 2.4В. В моей микросхеме выходное напряжение смещения около 100мВ (видно на осциллограмме рис. 18). В целом работает неплохо, но лично меня несовсем устраивает выходной диапазон напряжения. Собрано по схеме из документации:

Читайте также:  Витражи своими руками стены

Рис.17. Схема ADUM3190 из документации.

Рис.18. Осциллограмма переходного процесса ADUM3190.

Итоги

Подведем итог. На мой взгляд наилучшим вариантом является схема на отечественных АДО130А (где они их только взяли?!). Ну и напоследок небольшая сравнительная таблица:

Микросхема tr+задерж. (по осцилл.), мкс tf+задерж. (по осцилл.), мкс Диап. напряж., В Напряж. изоляции, В Шум (по осцилл.) мВп-п. Цена** за шт., р (05.2018)
IL300 10 15 0-3* 4400 20 150
HCNR201 15 15 0-3* 1414 25 150
LOC110 4 6 0-3* 3750 15 150
ACPL-C87B 15 15 0-2 1230 нд 500
6N136 10 8 0-3* 2500 15 50
АОД130А 2 3 0.01-3* 1500 10 90
ADUM3190T 2 2 0.4-2.4 2500 20 210

*- приблизительно (по собранной схеме с оптимизацией по быстродействию)

**- цена средняя по минимальным.
Ярослав Власов

Источник

Делаем свою USB звуковую карту с гальванической развязкой

Началось все как обычно, от нефиг делать от избытка свободного времени я решил сделать что-то эдакое. Тут я вспомнил, что друзья жалуются в дискорде на мой микрофон, слышны какие-то цифровые помехи, а если начать копировать файлы на компьютере то вообще. Купить нормальную звуковую карту? Это не про нас.

Кого заинтересовало прошу под кат.

Выбор микросхемы кодека

Вообще я не любитель делать электронику из чего попало, даже для себя, особенно из китайских компонентов с али, по этому первым делом идем на digikey и ищем что-нибудь. Первой мыслью было взять полноценную микросхему кодека и подключить его к STM32, а уж от него USB. В принципе это не сложно, но в какой-то момент я понял, что не хочу так заморачивайся и решил найти что-то «все в одном». Гугл настойчиво выдавал CM108 от C-Media Electronics, производитель в Тайване. Что ж, ну ладно, пусть будет так

Кодек требует себе EEPROM, и даже предлагает конкретную, аналог от STMicroelectronics M93C46-WMN6TP быстро нашелся на том же digikey (Integrated Circuits (ICs) > Memory). На всякий случай подключил его питание через фильтр, чтобы не привел нам ничего плохого в питание кодека.

Так же кварц, и т.к. я любитель сделать все по меньше и компактней то ставлю серию ABM3 (ABM3-12.000MHZ-B2-T) 5 на 3.2 мм (не ставить же гигантский HC-49)

Аудио коннекторы

После ищем сами коннекторы для наушников и микрофона. Я лично предпочитаю CUI для аудио и простых бытовых коннекторов питания 5.5, всегда их ставлю, конечно же поиск на digikey (Connectors, Interconnects > Barrel — Audio Connectors).

В моем случае у меня уже был готов компонент в библиотеке под SJ2-3574A-SMT т.к. раньше я его уже использовал, можно было бы выбрать разноцветные (у CUI есть), но мне не хотелось (для себя же делаю, как-нибудь разберусь).

Обычно последовательно ставят конденсаторы (0.47uF или 1uF, можно 4.7uF), это может быть тантал или керамика, но лучше всего использовать пленочные. В референс схеме в даташите предлагают 470uF, что слишком уж много, выбираем 0.47uF (если нужны очень низкие басы то можно и 1uF). Пленочные конденсаторы есть в SMD корпусах, что очень удобно, я поставил ECP-U1C474MA5 в корпусе 1206.

Гальваническая развязка по питанию

А теперь самое интересное

CM108 имеет 2 режима, 100mA и 500mA, разумеется я выбрал по жирнее, чтобы с размахом, 500mA * 5V = 2.5W, немного с запасом нам нужно найти развязку где-то на 3W, выставляем параметры (в разделе Power Supplies — Board Mount > DC DC Converters) и смотрим, что по дешевле, так же не забывая отсеивать производителей, которым вы не очень доверяете. Выбор пал на CC3-0505SF-E от TDK (хотя мне очень хотелось поставить от мураты!). Стоит он жирно, 11 баксов, но ничего не поделаешь.

После него я поставил фильтр, не забывая про конденсаторы 0.01uF и 0.001uF чтобы отсеять всякую ВЧ ересь т.к. она пролезает даже через гальванику. Ещё 100uF электролит, он точно лишним не будет.

Развязка интерфейса

Развязка питания это хорошо, но не помешает развязать и сам USB интерфейс. В разделе Digital Isolators (Isolators > Digital Isolators) можно найти подходящее, я выбрал ADUM4160 от Analog Devices.

Не забываем подтянуть DATA P на USB интерфейсе к 3.3V, т.к. это говорит хосту (ПК), что в порт воткнули девайс и надо бы начать с ним работать, по-хорошему в микросхеме эта подтяжка должна быть внутри, но её почему-то нет.

Ну и по мелочи

Сам USB конектор конечно же от Molex, ещё можно от TE или Wurth. Или поискать и у других, но я считаю что подобные конекторы лучше выбирать у этих трех, остальные хороши, но в другом.

Так же я решил, что если столько денег ушло на чистое питание, то делать надо все хорошо до конца, и развязка цифровой земли и аналоговой не исключение. Более того, вместо обычной перемычки на плате я поставил фильтр BLM15 (при разводки платы разделение земли лучше пододвинуть поближе к главной земле, т.е. к GND выводу нашего изолятора по питанию, там и должна расходится цифровая и аналоговая земля)

Заключение

Ну, на этом все, плату я развел в 4 слоя стандартного класса, после подготовки производства она будет стоить около 130р. Так же 4 слоя лучше в плане того, что полигоны питания, земли и цифровой земли лучше делать собственно полноценными полигонами, по-хорошему вообще на каждое питание свой слой, но у меня питание и цифровая земля на одном.

От идеи до полной разводки ушло где-то полтора часа. Плата вышла размером 22 на 66 мм.

Честно говоря, пока писал статью уже расхотелось заказывать плату (ну как всегда), так что пусть будет хотя бы статья.

Источник

Читайте также:  Греческие платья своими руками для девочек
Оцените статью