- Гальваническая развязка своими руками схема
- Гальваническая развязка: основные виды и принцип работы
- Что это такое?
- Принцип действия
- Виды гальванических развязок
- Оптоэлектронные пары
- Что такое гальваническая развязка, основные виды и принципы работы
- Что такое гальваническая развязка
- По какому принципу работает гальваническая развязка
- Существующие виды гальванических развязок
- Оптоэлектронная развязка
- Диодная оптопара
Гальваническая развязка своими руками схема
Продвинутая гальваническая развязка
Автор: игорь_сумы
Опубликовано 07.02.2017
Создано при помощи КотоРед.
Всякий кот, если ему приходится брать в лапы импульсный блок питания с целью его отремонтировать, всегда рискует. То конденсатор возьмет да и испустит дух, то транзистору вздумается отлететь в мир иной ну и другие неприятности бывают. Давно известно, что включение импульсных блоков питания после ремонта через лампочку позволяет избежать брызг, искр, запахов и проч. Фр-ррр, как вспомню, — волосы дыбом на хвосте. А еще опытные коты настоятельно рекомендуют пользоваться при ремонте ИИП гальванической развязкой. Жуть эти импульсные блоки питания. Но мир таков, что их все больше и больше и часто приходится их ремонтировать. Вот как раз для таких котов и предназначено это устройство. Оно позволяет настраивать ИИП через гальваническую развязку, запускать ИИП через лампочку и без оной, кратковременно и на долго. Идею этого устройства я подсмотрел в Польше в сервисном центре маленького городка. Там подобное устройство (правда мощностью в 3 кВт) и без автоматики, точнее с автоматикой на реле, эксплуатируется уже много лет и мне довелось с ним работать. Понять насколько это замечательная идея. И я решил сделать нечто подобное. Я ограничился мощностью трансформатора в 100Вт ибо утюгов и фенов я не беру в лапы с целью ремонта, а для бытовых ИИП этого вполне хватит. Вот что у меня получилось:
Трансформатор гальванической развязки включен в сеть через автомат на 6А на тот случай если что-то пойдет совсем не так, его должно выбить. Пока подобное не случалось. В принципе автомат можно заменить обычным тумблером. В оригинальной конструкции была применена «пробка — автомат» от электросчетчика. Органы управления: слева на фото автомат включения, над ним зеленый светодиод «Готов», под ним переключатель ламп-баеретеров, о нем я расскажу позже. Далее модернизированная выходная розетка, о ней тоже скажу позже, под ней переключатель на 3 положения без фиксации для кратковременной подачи напряжения на выход. Справа от розетки — окно, прикрытое красным светофильтром, через него можно видеть нити накала ламп. Под окном — красная кнопка без фиксации — кнопка включения прибора в долговременный режим.
Работать с этим прибором так:
1. Включаем прибор автоматом, при этом кратковременно вспыхнет светодиод «Готов», что сигнализирует об исправности прибора. В принципе не мешало-бы дополнить прибор еще одним светодиодом, для индикации включенного состояния, но лень свойственная котам и сложность разборки конструкции пока не позволили это сделать. Я решил, что добавлю светодиод когда буду заменять перегоревшую лампу. Итак, светодиод моргнул, все хорошо.
2. Вывести переключатель под розеткой из среднего положения и подать питание на ИИП через лампочку (влево подаем 110В, вправо — 220В). Возможности подать напряжение исключаяя лампочку из цепи этим переключателем нет. Это сделано в целях безопасности. Подав напряжение наблюдаем через окно на то, как вспыхнула и почти погасла лампа-баретер. Если это так, то все в порядке. Можно переходить к «красной кнопке», если же лампа постоянно горит ярко — что-то в схеме ИИП не так, не стоит подавать напряжение. Подробнее методика ремонта ИИП с помощью лампочки много раз описывалась на просторах Интернета
3. Переходим к «Красной кнопке» одно кратковременное нажатие на нее приведет к включению режима 1 . Сработает реле К1 и своими замыкающими контактами подаст напряжение на выход через лампу, а размыкающими разорвет цепь 110В. Это сделано опять таки для безопасности. Ибо никакие ошибочные манипуляции с прибором не выведут его из строя. Без этого контакта можно представить ситуацию, когда и реле К1 сработает и зацепив переключатель хвостом можно закоротить пол вторичной обмотки трансформатора. Не брезгуйте этим контактом если будете повторять это устройство и оставите в нем режим 110В. В этом режиме работы (т.е. 220В через лампочку) группа синих светодиодов в верхней части розетки,на схеме обозначенная VD7-VD8, начнет мигать с частотой около 1 Гц. Повторное кратковременное нажатие на «красную кнопку» отключит этот режим.
4. Длительное (более 1 сек) нажатие на «красную кнопку» включит реле К2 и напряжение 220В со вторичной обмотки трансформатора будет подано в нагрузку в обход ламп-баретеров. Это режим 2. При этом табло из синих светодиодов будет светиться постоянно. Отключить этот режим можно так же длительно удерживая «красную кнопку». Или вытащив из розетки вилку ИИП, об этом расскажу позже.
Схема силовой части прибора
В приборе установлены две лампы-баретеры. На 15Вт и на 60Вт. Первая — для ремонта маломощных ИИП, которые применяются в зарядках телефонов и т.п. Вторая — на 60 Вт для ремонта ИИП телевизоров, усилителей и других относительно-мощных ИИП. Переключатель ламп находится под выключателем питания. К сожалению он позволяет только добавить лампу в 60Вт в параллель к 15-ваттной. Это не совсем логично, но мне очень хотелось применить именно такой, вытяжной выключатель от старой АТС. Он мне так напоминает выключатель питания моего первого осциллографа С1-83, который как раз включался вытяжным выключателем. Ностальгия случается и с котами. Вы можете применить другой выключатель, а лучше переключатель.
Схема блока автоматики.
Блок автоматики питается от дополнительной обмотки трансформатора. Величина переменного напряжения – 18В. За основу блока автоматики взято вот это устройство https://www.drive2.ru/c/292144/ изначально предназначенное для автомобиля. Уж очень мне понравилась идея управлять одной кнопкой. В польском прототипе использовались раздельные конопки и механический микровыключатель в розетке для автоматического сброса при отключении нагрузки. Я применил электронный, на фотореле (DD1/1, DD1/2 на принципиальной схеме). На элементах DD1/3 и DD1/4 собран генератор 1Гц для моргания светодиодной панелью в режиме 1.
Модернизированная розетка. В начале я хотел применить механический микропереключатель и купил для этой цели стенную розетку со шторкой и крышкой турецкой фирмы ViKo. Однако, эксперименты показали, что крышка совсем не нужна и только мешает работе, я ее аккуратно срезал дремелем и разместил на ее месте табло из семи ярких синих светодиодов. Диоды спаял последовательно на полосочке макетной платы и поместил в прозрачную термоусадку. Сверху прикрыл табло синим светофильтром из оргстекла. Шторка, прикрывающая контакты от детей, подпружинена достаточно мощной пружиной, преодолеть силу которой не просто. Я бы сдвигал прибор с места на столе, что не хорошо. Поэтому я решил сделать фотореле. На месте удаленной шторки в розетке я вклеил друг на против друга фотопару из инфракрасного светодиода АЛ107 и фотодиода ФД256. Если посмотреть в правую дырочку розетки через цифровой фотоаппарат телефона то свечение светодиода видно. Если фотодиод засвечен светом светодиода или естественным светом – транзистор VT1 открыт и микроконтроллер находится в состоянии Reset. Если в розетку вставить вилку, транзистор VT1 закроется, а VT2 откроется и загорится зеленый светодиод «Готов». При включении питания светодиод кратковременно вспыхивает из-за зарядки конденсатора С1. Работу микроконтроллера, программу для него, а так же детальнейшее описание его работы можно найти перейдя по ссылке, которую я указал выше. В качестве W1 использована «пищалка» от компьютера. Без генератора. Можно применить малогабаритную динамическоую головку. С пьезоизлучателем схема не работает. Звуковое сопровождение полезно и оживляет даже такое простое устройство.
Весь блок автоматики размещен на одной макетной плате. Печатная плата не разрабатывалась. Хотя по фотографии можно перенести проволочную «вязь» в рисунок для печатной платы. Это уже на Ваше усмотрение.
Примененные детали.
Трансформатор: готовый 220В на 36В. Был перемотан. Вторичная обмотка удалена, вместо нее намотал 944 витка проводом диаметром 0,55мм. Виток к витку, с межслойной изоляцией. Кроме этого намотана обмотка для питания блока автоматики. Она состоит из 75 витков такого-же провода. Трансформатор пропитан бакелитовым лаком горячей сушки.
Реле. Применены безродные реле от промышленных реле времени серии ВЛ-64. Реле на 24В постоянного тока. Хотя они нормально срабатывают и от 18В. Так же я остановился на этих реле потому что они имеют открытую электромагнитную систему, что позволяет оперативно проверять состояние контактов. Но реле крепились на плату. Поэтому я изготовил из стеклотекстолита две переходные платы для крепления реле. В принципе у Вас может быть другая конструкция как блока реле, так и прибора в целом.
Переключатель без фиксации (на фото черно-коричневый с винтовыми клеммами): от какой-то авиационной техники рассчитан на 10А
Вытяжной переключатель – от старой АТС. Применять не рекомендую. Крепить сложно, да и изоляция не рассчитана на 220В.
Остальные компоненты не должны вызывать вопросов: патроны для ламп стандартные, автомат на 6А тоже. Монтаж силовой части выполнен гибким проводом сечением 1,5мм2.
Устройство смонтировано в подходящем корпусе. Снизу прикрутил резиновые ножки, что бы прибор не скользил по столу. Сверху не мешало – бы предусмотреть ручку. Прибор-то довольно тяжелый. Уже заказал ручку из Китая. Где то едет. Так, что прибор еще можно модернизировать. Работать с прибором просто и приятно. Больше никаих лампочек на столе, от которых прогорает сам стол или бумага на нем. Все аккуратно. Приборчик приятно «мурлыкает» при работе с «красной кнопкой». Кроме этого я нашел возможность оперативно проверять лампочки накаливания, не разбирая прибора. Для этого нужно «красной кнопкой» включить режим 2 и вывести переключатель кратковременного включения в положение 110В. При этом на лампочку (или группу ламп) будет подано 110В и в ее исправности легко убедиться посмотрев через окно (прикрытое красным светофильтром) на нить накала.
Все вопросы как обычно, в личку, или на форум, если моя конструкция нуждается в обсуждении.
ЗЫ. Я благодарен пользователю с ником «Самокат ветерана» из сайта www//http:drive2.ru за то, что он сконструировал устройство которое мне идеально подошло. Не пришлось придумывать свой вариант.
Источник
Гальваническая развязка: основные виды и принцип работы
Схемное решение под названием «гальваническая развязка» встречается в электронной и электротехнической практике довольно часто. По этой причине важно ознакомить пользователя с тем, что оно собой представляет. Кроме того, интересно будет разобраться с существующими разновидностями «развязывающих» узлов и принципом их действия.
Что это такое?
Гальваническая развязка – это способ передачи электроэнергии или информации между входными и выходными цепями, при котором части схемы непосредственно не связаны одна с другой. Необходимость в ней возникает в случаях, когда требуется обеспечить безопасность работы во вторичных цепях с сохранением передаваемой мощности.
Кроме того, благодаря такому приему во вторичной цепи образуется независимый контур, позволяющий:
- частично снизить влияние помех, действующих в первичной цепи;
- повысить точность снятия показаний в измерительных схемах;
- улучшить согласование с нагрузкой.
И, наконец, развязка позволяет снизить вероятность повреждения подключенного ко вторичной обмотке оборудования.
Принцип действия
Объяснить принцип действия гальванической развязки удобнее всего на примере трансформатора, у которого вторичная обмотка электрически не связана с первичной.
Чаще всего сложность возникает в понимании снижения опасности поражения током при независимости входных и выходных цепей. Дело в том, что если авария (пробой изоляции и попадание опасного потенциала на корпус) произойдут непосредственно в питающей линии – на прикоснувшегося к нему человека действует мощность всей сети.
При наличии развязки сила тока будет ограничена не только сопротивлением человеческого тела, но и мощностью трансформатора (или другого элемента, используемого в этом качестве). Если же подключенный ко вторичной цепи корпус прибора будет заземлен – опасность поражения снизится до минимальной.
Виды гальванических развязок
Известно несколько способов искусственного разделения питающих и нагрузочных цепей.
Чаще всего для этого используются:
- Индуктивная (или трансформаторная) схема.
- Оптоэлектронные пары полупроводниковых элементов.
При реализации первого способа используется разделительный узел – трансформатор, которому сердечник в данном случае не требуется. Коэффициент его передачи составляет обычно единицу, то есть напряжение во вторичной обмотке равно входному.
К минусам этого варианта относят:
- громоздкость конструкции;
- возможность применения только в цепях переменного тока;
- частичное сохранение помех из первичных цепей.
Избавиться от этих минусов удается за счет применения особого вида развязки, называемой оптоэлектронной.
Оптоэлектронные пары
Основными элементами такой развязки являются оптроны, реализуемые в схемах на диодах, тиристорах, а также на транзисторах и других электронных компонентах, чувствительных к свету. Функцию первичного элемента узла выполняет излучающий светодиод, а средой, передающей полезный импульс, является светопроводящее поле, созданное внутри оптоэлектронной пары.
В этих приборах электрическая нейтральность светового потока позволяет организовать эффективную развязку входных и выходных цепей, а также обеспечить согласование узлов с разными комплексными сопротивлениями. К преимуществами относят компактность прибора и существенное снижение уровня помех на выходе.
Источник
Что такое гальваническая развязка, основные виды и принципы работы
Здравствуйте уважаемые посетители моего канала! В этой статье я хочу поговорить с вами о таком немаловажном элементе практически любой электронной схемы, как гальваническая развязка. Расскажу о существующих видах, а также о преимуществах и недостатках. Итак, приступим.
Что такое гальваническая развязка
И начнем мы с вами с определения.
Гальваническая развязка — это выполнение передачи энергии либо определенного сигнала между электрическими цепями, которые не имеют непосредственного контакта.
Так же гальваническая развязка используется для передачи сигналов с максимально возможным уровнем помех, для бесконтактного управления, а также для непосредственной защиты электрооборудования от возможных повреждений и людей от вероятного поражения электрическим током.
Еще необходимо знать, что при таком виде развязки электрические потенциалы разделенных цепей могут существенно разливаться.
По какому принципу работает гальваническая развязка
Для осознания алгоритма работы давайте разберемся в конструкции трансформатора.
Итак, в трансформаторе первичная обмотка не имеет электрической связи с вторичной обмоткой. То есть попадание электрического тока с первички возможно только в результате пробоя изолирующего материала. Но при этом разность потенциалов на выводах катушек достигает существенных величин.
И получается, если мы вторичную катушку соединим с корпусом устройства (то есть будет соединение с землей), то на аппарате будут отсутствовать паразитные токи, которые несли угрозу обслуживающему персоналу.
Существующие виды гальванических развязок
Существует несколько способов выполнить такое разделение. Вот о них и поговорим более подробно:
1. Индуктивная (она же трансформаторная) развязка. Для реализации подобного варианта развязки потребуется использовать магнитоиндукционный элемент (трансформатор). В данном случае сердечник может и не использоваться.
При этом для подобной развязки в основном используют трансформаторы с коэффициентом равным «1». И «первичка» подсоединяется к источнику сигнала, а «вторичка» к приемнику. И величина напряжения на приемнике имеет прямую зависимость от напряжения на источнике. К минусам такого варианта можно отнести следующие моменты:
— Размеры такого девайса не позволяют производить миниатюрные изделия, что в современных реалиях очень большой минус.
— Частотная модуляция гальванической развязки накладывает жесткие ограничения на частоту пропускания.
— Помехи входного сигнала существенно снижают качество выходного сигнала.
— Такая развязка функционирует исключительно в сетях с переменным напряжением.
Оптоэлектронная развязка
Развитие электроники и полупроводниковых элементов позволило создать принципиально новые развязки, основанные на использовании оптоэлектронных узлов. Основными элементами таких изделий являются оптроны (оптопары) реализованные на основе тиристоров, диодов, транзисторов и других подобных компонентов, обладающих повышенной чувствительностью к свету.
Причем в оптической части схемы, которая связывает приемную и передающую часть, в роли переносчика сигнала выступает свет. Нейтральность фотонов позволяет реализовать электрическую развязку входной и выходной сети. И так же выполнить согласование цепи с разными сопротивлениями на входе и выходе.
Оптическая пара выполнена из следующих компонентов: источника света, светопроводящей среды и непосредственного приемника света, где как раз и происходит преобразование светового потока в электрический импульс (сигнал). Причем величина сопротивления входа и выхода в оптроне может иметь величину в десятки Мом.
Принцип работы оптоэлектронной развязки заключен в следующем: на светодиод поступает входной сигнал, что побуждает светодиод к испусканию света, который через проводящую среду попадает на фототранзистор, на электродах которого формируется перепад напряжения либо же импульс тока. Таким образом, выполняется гальваническая развязка цепей, которые имеют связь со светодиодом с одного края и связь с фототранзистором с другого.
Несомненными преимуществами данного вида гальванической развязки считаются: достаточно скромные размеры готового элемента (что позволяет использовать их в микроэлектронике) и отсутствие помех (наводок) от приемника, что позволяет модулировать сигналы достаточно широкого диапазона частот.
Диодная оптопара
В данном варианте гальванической развязки источником света является светодиод, а приемником выступает фотодиод. Принцип работы таков: когда нужно передать сигнал на светодиод подается напряжение. Излученный светодиодом световой поток попадает на фотодиод, в результате чего фотодиод открывается и пропускает ток.
Подобная пара может использоваться вместо ключа и функционировать с сигналами частотой до нескольких десятком МГц.
Главным недостатком такого варианта развязки является невозможность управления большими токами без использования дополнительных элементов. Кроме этого КПД такого элемента достаточно низок.
На этом я хочу прервать повествование о гальванической развязке. Если вам понравилась статья, тогда оцените ее лайком. В следующей части будут рассмотрены: емкостная гальваническая развязка, электромеханическая развязка, а также поговорим о задачах гальванической развязки и главных ее недостатках. Спасибо за ваше внимание!
Источник