- Генератор высокой частоты своими руками 555
- Генератор прямоугольных импульсов на NE555
- Генератор на NE555 с регулировкой частоты
- Применение таймера NE555. Часть 2 — генератор прямоугольных импульсов на NE555
- Пример №7 — Простой генератор прямоугольных импульсов на NE555
- Пример №8 — Генератор высокой частоты на NE555
- Пример №9 — Генератор низкой частоты на NE555
- Пример №10 — Регулируемый генератор прямоугольных импульсов на NE555
- Пример №11 — Одновибратор на NE555
- Пример №12 — Генератор, управляемый напряжением (ГУН) на NE555
Генератор высокой частоты своими руками 555
Генератор высокого напряжения на NE555
Автор: Sobiratel_sxem, sobiratel_sxem@mail.ru
Опубликовано 03.12.2013
Создано при помощи КотоРед.
На просторах интернета очень много схем посвящено данной тематике и подобным конструкциям. Как правило они не лишены одного своего серьёзного недостатка: все они не имеют системы защиты от обратного напряжения. В большинстве случаев это приводит к печальным последствиям: выгоранию выходных транзисторов и пробою таймера NE555.
Испытывая одну из подобных конструкций я сам спалил пару микросхем NE555 и несколько выходных ключей. Тогда и возникла идея доработки данной схемы и добавления простейшей, но надежной защиты. После проведённой доработки больше при работе не возникало никаких проблем и не сгорело ни одного элемента. Итак, рассмотрим работу устройства подробнее.
Основу данной схемы составляет генератор прямоугольных импульсов на интегральном таймере NE555 (отечественный аналог КР1006ВИ1). Частота генератора задаётся цепочкой R1-R2-C1. При данных номиналах частота генератора составляет приблизительно 30 килогерц. С выхода генератора через токоограничительный резистор R3 выходной сигнал поступает на вход составного транзистора Т1-Т2. В коллектор транзистора Т2 включена первичная обмотка повышающего выходного трансформатора. Диод VD1 служит для защиты устройства от броска обратного напряжения при закрытии транзистора. Супрессорный диод VD2 защищает транзистор Т2 от пробоя и выбирается по максимальному напряжению коллектор-эмиттер Т2. Супрессорный диод VD3 защищает микросхему DD1 от пробоя. Так как максимальное напряжение питания микросхемы составляет 15 вольт, супрессорный диод следует выбрать на напряжение открывания не более этого значения (или немного превышающим). При работе на вторичной обмотке трансформатора напряжение приблизительно 5-6 киловольт. Это напряжение поступает на вход умножителя УН-9/27. С выхода данного умножителя и снимается высокое напряжение.
Таким образом доработка схемы заключается в установке диода VD1 и супрессорных диодов VD2 и VD3. Несмотря на всю простоту защиты, она дала отличные результаты и надёжную защиту схемы от бросков обратного напряжения.
Следует отметить интересный факт, что генератор собранный по данной схеме имеет так называемый электронный ветер — поток отрицательно заряженных электронов у высоковольтного провода. Его можно обнаружить по холодку при приближении руки к высоковольтному проводу. Поэтому данная схема и используется очень часто при построении ионизаторов воздуха. Кроме того замечен ещё один интересный факт: высокое напряжение с данной установки способно растекаться по поверхности диэлектрических материалов (стеклу, дереву, бумаге, фарфору, пластмассе. ), электризует вокруг себя лежащую бумагу (до того что при проведении рукой по газете, лежащей рядом с установкой по ней пробегают искры). Ни с одной другой схемой (без умножителя, то есть с переменным напряжением на выходе) таких эффектов не было обнаружено.
Внимание. Не проводите подобные опыты не имея достаточного опыта. Соблюдайте строго технику безопасности! Запомните: Электрический ток — это хороший слуга, но плохой хозяин.
Применяемые детали:
DD1 — NE555 (КР1006ВИ1)
Т2 — КТ8101А (С радиатором)
Трансформатор Tr1 — это переделанный строчный трансформатор от старого лампового телевизора. Для его переделки снимаем первичную обмотку и мотаем свою. Первичная обмотка содержит 8 витков провода ПЭЛ-1.5. Вторичная обмотка (высоковольтная, залитая пластмассой) остается штатной, после чего трансформатор собирается. При сборке следует между половинок сердечника следует сделать зазор около 1 мм из тонкого гетинакса или стеклотекстолита.
Источник
Генератор прямоугольных импульсов на NE555
555 — аналоговая интегральная микросхема, универсальный таймер — устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искаженного в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи электроэнергии, устройства широтно-импульсного регулирования, таймеры и др.
В данной статье расскажу о построении генератора на этой микросхеме. Как написано выше мы уже знаем что микросхема формирует повторяющиеся импульсы со стабильными временными характеристиками, нам это и нужно.
Схема включения в астабильном режиме. На рисунке ниже это показано.
Так как у нас генератор импульсов, то мы должны знать их примерную частоту. Которую мы рассчитываем по формуле.
Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. t = t1+t2.
Частота и период — понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C;
t2 = 0.693R2C;
С теорией закончили так что приступим к практике.
Разработал простенькую схему с доступными всем деталями.
Расскажу о ее особенностях. Как уже многие поняли, переключатель S2 используется для переключения рабочей частоты. Транзистор КТ805 используется для усиления сигнала (установить на небольшой радиатор). Резистор R4 служит для регулировки тока выходного сигнала. Сама микросхема служит генератором. Скважность и частоту рабочих импульсов изменяем резисторами R3 и R2. Диод служит для увеличения скважности(можно вообще исключить). Также присутствует шунт и индикатор работы, для него используется светодиод со встроенным ограничителем тока(можно использовать обычный светодиод ограничив ток резистором в 1 кОм). Собственно это все, далее покажу как выглядит рабочее устройство.
Вид сверху, видны переключатели рабочей частоты.
Снизу прикрепил памятку.
Данными подстроечными резисторами регулируется скважность и частота (на памятке видно их обозначение).
Источник
Генератор на NE555 с регулировкой частоты
К слову, микроконтроллер NE555 был разработан еще в 1971 году и настолько удачно, что его применяют даже в настоящее время. Существует множество аналогов, более функциональных моделей, модификаций и т.п., но оригинальный чип по-прежнему актуален.
Микросхема представляет собой интегральный таймер. В настоящее время выпускается преимущественно в DIP-корпусах (ранее были версии в круглых металлических).
Функциональная схема выглядит следующим образом.
Рис. 1. Функциональная схема
Может работать в одном из двух основных режимов:
1. Мультивибратор (моностабильный);
2. Генератор импульсов.
Нас интересует только последний вариант.
Простой генератор на NE555
Наиболее простая схема представлена ниже.
Рис. 2. Схема генератора на NE555
Для наглядности далее представлен график выходного напряжения с сопоставлением заряда конденсатора C.
Рис. 3. График выходного напряжения
Таким образом, расчет частоты колебаний (с периодом t на графике) будет выполняться на основе следующей формулы:
f = 1 / (0,693*С*(R1 + 2*R2)),
соответственно формула полного периода:
t = 0,693*С*(R1 + 2*R2).
Время импульса (t1) считается так:
t1 = 0,693 * (R1 + R2) * C,
тогда промежуток между импульсами (t2) – так:
t2 = 0,693 * R * 2 * C
Изменяя значения резисторов и конденсатора, можно получить требуемую частоту с заданным временем длительности импульсов и паузы между ними.
Регулируемый генератор частоты на NE555
Самый простой вариант – это переработка нерегулируемой схемы генератора.
Рис. 4. Схема генератора
Здесь второй резистор заменяется на два регулируемых включенных со встречно-параллельными диодами.
Другой вариант регулируемого генератора на таймере 555.
Рис. 5. Схема регулируемого генератора на таймере 555
Здесь положением переключателя (за счет включения нужного конденсатора) можно изменить регулируемый диапазон частот:
Включатель перед диодом D1 увеличивает скважность, его можно даже не использовать в схеме (при его работе может незначительно изменяться частотный диапазон).
Транзистор лучше всего смонтировать не теплоотводе (можно даже на небольшом).
Скважность и частоту регулируют переменные резисторы R3 и R2.
Еще одна вариация с регулированием.
Рис. 6. Схема регулируемого генератора
IC1 – это таймер NE555N.
Транзистор – высоковольтный полевой (чтоб свести к минимуму эффект нагрева даже при высоких токах).
Чуть более сложная схема, работающая с большим числом диапазонов регулирования.
Рис. 7. Схема, работающая с большим числом диапазонов регулирования
Все детали уже обозначены на схеме. Регулируется за счет включения одного из диапазонов (на конденсаторах C1-C5) и потенциометрами P1 (отвечает за частоту), P4 (отвечает за амплитуду).
Схема требует двуполярного питания!
Мнения читателей
Микроконтроллер — ? Пиз**** статьи друг у друга, но хоть проверяйте что пи**** . И если у человека имя меньше 5 символов, то что ему уже и комментарий нельзя оставить ? Да .
Алекс / 01.05.2021 — 18:57
Ко всему вышесказанному, 555 — микроконтроллер! Крутой МК.
Василий Зубенко / 25.01.2021 — 23:44
«Транзистор – высоковольтный полевой (чтоб свести к минимуму эффект нагрева даже при высоких токах)».Исправьте этот бред.
Макс / 02.07.2020 — 22:46
Люди,это всё фуфло изобретателей велосипедов
Евгений / 15.05.2020 — 10:18
Да уберите же наконец схему на рис 5. При таком включении выходного транзистора, при положении движка потенциометра R4 в крайне верхнем положении он просто сгорит.Да и вообще схема сырая.
Владимир / 06.05.2020 — 09:21
Подскажите пожалуйста, откудава взалась константа 0,693? Это не пороговое срабатывание микросхемы случайно?
сергей / 08.04.2020 — 20:09
Покажите человека у которого устройство показаное на Рис.7.работает.Столько ошибок -это даже восхищает!D6,Pin 4,8(555),про точки соединений я промолчу.А уж «земля»-виртуальный блеск!Постыдились-бы ребята.
Valentin / 16.06.2019 — 18:53
Под Рис.3 в формуле для длительности паузы между импульсами следует убрать лишнюю звездочку и привести формулу к видуt2=0,693×R2×C
shadi abusalim / 03.09.2018 — 13:55
Пожалуйста, помогите вам использовать электронную схему, используя встроенный 555Чтобы отрегулировать ширину импульса и управлять им, чтобы добавить управление в вспышку, тушите и зажигайте лампу в том же кругеЧастота цепи должна составлять до 500 кГцСуществует круг, расположенный на сайте, похожий, но слегка колеблетсяmail shadi_abusalim@yahoo.comThe current and frequency are controlled by the variable resistors R3 and R2.Another variation with regulation.Fig. 6. Scheme of the regulated generator
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:
Источник
Применение таймера NE555. Часть 2 — генератор прямоугольных импульсов на NE555
Пример №7 — Простой генератор прямоугольных импульсов на NE555
В момент включения схемы, конденсатор C1 разряжен и на выходе 3 таймера NE555 находится высокий уровень. Затем конденсатор C1 через резистор R1 начинает постепенно заряжаться.
В момент, когда потенциал на конденсаторе, и соответственно на выводе 6 (стоп) таймера, достигнет примерно 2/3 напряжения питания, сигнал на выводе 3 переключится на низкий уровень. Теперь конденсатор через сопротивление R1 начинает разряжаться. Когда уровень напряжения на входе 2 (запуск) упадет до 1/3 Uпит., на выходе снова будет высокий уровень. И процесс повторится снова.
Если к выходу добавить еще RC-цепь (выделено красным цветом), то выходной сигнал по форме будет приближен к синусоиде.
Пример №8 — Генератор высокой частоты на NE555
Для таймера NE555 – частота в 360кГц является максимальной, поскольку при увеличении ее, работа схемы становится нестабильной.
Пример №9 — Генератор низкой частоты на NE555
Генератор низкой частоты по сути своей являются таймером времени. Увеличивая емкость электролитического конденсатора можно растянуть временной интервал. При интервале более 30 минут, показания схемы будут неточными.
Пример №10 — Регулируемый генератор прямоугольных импульсов на NE555
Данная схема позволяет устанавливать на выходе таймера необходимую частоту генератора в пределах от 1 Гц до 100 кГц.
Пример №11 — Одновибратор на NE555
При подаче питания на схему одновибратора, на выводе 3 таймера NE555 будет низкий уровень. Запуск одновибратора происходит в момент подачи отрицательного импульса на вход 2 (запуск), при этом на его выходе будет высокий уровень в течение времени определяемое значениями R1 и C1.
Следует иметь в виду, что запускающий импульс должен быть короче выходного. Если же входной сигнал будет дольше, то пока на входе низкий уровень на выходе все время будет высокий. Подробнее о работе одновибратора на 555 таймере читайте здесь.
Пример №12 — Генератор, управляемый напряжением (ГУН) на NE555
Данный генератор иногда называют преобразователь частоты напряжением, так как частота может быть изменена путем изменения входного напряжения.
Как известно вывод 5 таймера 555 предназначен для управления длительностью импульсов на выходе путем подачи на него напряжения, которое должно составлять 2/3 от Uпит. При увеличении управляющего напряжения, увеличивается время заряда/разряда конденсатора и как следствие уменьшается частота на выходе генератора.
Источник: «Применение микросхемы 555», Колин М.
Источник