- Генератор v.2.0 с непрерывным режимом для проверки телефонных линий
- Содержание / Contents
- ↑ Схема
- ↑ Конструкция и детали
- Камрад, рассмотри датагорские рекомендации
- 🌼 Полезные и проверенные железяки, можно брать
- Самостоятельное изготовление тонального генератора и индуктивного щупа.
- Кабельный тестер своими руками
- Самодельная прозвонка (пробник) для дома
- Сборка пробника
- Сборка элементарная, основные шаги таковы:
- Что можно им можно проверять дома?
- Простейший тестер-прозвонка своими руками
- Принципиальные схемы
- Тестер своими руками — варианты изготовления, калибровка и настройка прибора
- Принципиальная схема простого тестера
- Принципы работы тестера
- Схемы самодельных тестеров автомобильного типа
- Фото тестеров своими руками
- Прозвонка кабеля и проводов: методы, схемы, тестеры
- Методы
- Прозвонка многожильных кабелей с целью их маркировки
- Проверка изоляции
- Поиск места обрыва
- Тестеры для кабеля
- Самодельная бесконтактная прозвонка
- Кабельный тестер своими руками
- Прикрепленные файлы:
- РадиоКот :: Пробник для прозвонки монтажа
- «Электроника и Радиотехника»
- Схемы простых пробников
Генератор v.2.0 с непрерывным режимом для проверки телефонных линий
Содержание / Contents
↑ Схема
В целом генератор практически не изменился, за исключением выходной цепи. Задающий генератор собран на микросхеме DD1, частоту которого (в интервале 500 – 1000 Гц) можно подобрать, изменяя сопротивление резистора R1.
В генераторе предусмотрено два режима работы: ждущий и непрерывный. Для включения генератора переключатель SА2 переводят в положение «ГЕН».
В ждущем режиме, средний контакт сдвоенного переключателя SА1 находится в нижнем на схеме положении, напряжение питания генератора подается в измерительную цепь, при этом генератор находится в дежурном режиме, пока цепь с другого конца линии не будет замкнута по постоянному току.
В непрерывном режиме, средний контакт сдвоенного переключателя SА1 находится в верхнем на схеме положении, напряжение питания через контакты SА1.2 подается на микросхему DD1 и транзисторы VT1 и VT2, а непрерывный сигнал с выходных транзисторов VT1 и VT2 через конденсатор С2, контакты SА1.2 и телефонный капсюль BF1 подается в измерительную линию.
В непрерывном режиме возможно слабое звучание телефонного капсюля BF1 за счет емкости между жилами кабеля. Но этот эффект можно использовать для примерного определения места обрыва линии, опытный монтер может определить место обрыва на слух с точностью ±20 метров. Например, электромонтер С.Г. Ермаков таким генератором на слух определял, в каком шкафу, щитке или участке линии находится обрыв.
Если переключатель SА2 переключить в положение «ТЛФ» то внутренний телефонный капсюль BF1 можно использовать для проверки действующей абонентской линии на наличие «зуммера».
↑ Конструкция и детали
Транзисторы VT1 – VT3 кремниевые, например VT1, VT3 – КТ503В, КТ3102Б, КТ815Б, КТ817Б, VT2 – КТ502В, КТ3107Б, КТ814Б, КТ816Б, при чем последние желательнее (для повышения надежности).
Диоды VD1, VD2 – кремниевые рассчитанные на прямой ток не менее 50 мА, стабилитроны VD3, VD4 на напряжение стабилизации 12 – 15 В, например КС213А, Д814Д, КС515А. BF1 – телефонный капсюль или динамик сопротивлением по постоянному току 50 – 100 Ом.
Батарея GB1 на напряжение 4 – 12 В.
Правильно собранное, без ошибок, устройство в наладке не нуждается. Подключаем генератор в измеряемой линии с одного конца, а с другого – телефонный капсюль сопротивлением 50 – 500 Ом, при исправной линии слышим звук и в генераторе и в капсюле на другом конце.
Спасибо за внимание!
Василий Мельничук (UR5YW), Евгений Бочарников.
Камрад, рассмотри датагорские рекомендации
🌼 Полезные и проверенные железяки, можно брать
Опробовано в лаборатории редакции или читателями.
Источник
Самостоятельное изготовление тонального генератора и индуктивного щупа.
Необходимость в таком приборе,простота схемы и неадекватность цены,заставили вспомнить забытые навыки радиолюбителя.Информация здесь:журнал Радиоаматор 2006 №2,2010 №9.
нужно его в серийное производство, только дизайн не меняйте — хоть какое-то веселье на серьезных объектах.
Да,у меня ещё несколько пистолетов было,но даже игрушечные в наше сложное время вызывают отторжение: )Конденсатор обр.связи 15n уменьшил до 4n7-не хватало усиления.Динамик применил 8 Ом, 0,25W, 40мм.
nachavilo написал :
Самостоятельное изготовление тонального генератора
а можно схемку прикрепить сюда? и как он ловит в сравнении с фабричными девайсами?
nachavilo подскажите как практически работаете с этим прибором.Можно им отыскивать место залегания и обрыва проводки 220в в стене? Также интересует вопрос можно работать с этим генератором в сети 220в без ее отключения на пример для нахождения автоматического выключателя в щите который отключает определенную группу розеток?
vt1970 , Методы работы подробно описаны в указанных выше журналах.Без отключения работать нельзя.
Понадобился генератор с функцией подачи сигнала в действующую сеть 220 В :
Неоднократные попытки найти схему в интернете оказались безуспешны. Посвящённых в сие таинство прошу поделиться ссылкой , схемой , добрым словом ))
ИМХО.
Схему MS6818 (он на вашей картинке) вряд ли найдёте, да и если найдёте, повторить её будет сложновато.
А вот подать сигнал с генератора в сеть 220В можно с помощью двух конденсаторов (утрированно). Номиналы рассчитываются исходя из двух условий: минимальное сопротивление для сигнала генератора и максимальное сопротивление для сети 220В. Подробности ищутся поиском «Передача сигнала по электросети»
Есть попроще прибор : MS5905RTD..схема выходного каскада генератора нужна только .
Источник
Кабельный тестер своими руками
Предлагаю Вашему вниманию разработку которая облегчит жизнь людям занимающихся монтажом многожильных кабелей. Эта тема не новая, но я хотел сделать что то свое. А идею прибора предложил мой коллега по работе. Он часто занимается монтажом и такой прибор ему очень нужен. Кабель-тестер состоит из передатчика который имеет 22 вывода и генерирует 22 цифровых значения от 1 до 22, и приемника который эти значение принимает распознает и отображает на индикаторе. Пользоваться прибором очень просто с одной стороны прозваниваемого кабеля к нужным жилам подключаем цифровые выводы передатчика и общий, который можно подключить либо к экрану кабеля либо к цветной жиле что бы на другом конце кабеля было проще искать ее. С другой стороны подключает общий приемника, а входом поочередно касаемся каждой жилы кабеля и смотри на индикатор. При распознавании приемником подаваемого сигнала от передатчика будет выведено цифровое значение на индикатор.
Вот схема передатчика
Готовая печатная плата
И фото прибора в корпусе.
Вот схема приемника
Такое хаотичное подключение 7-сегментного индикатора вызвано тем что рисовалась сначала печатная плата и как было удобно расположить проводники от индикатора к микросхемам так и располагали.
Печатная плата приемника
При включении приемника на индикаторе выводятся прочерки пока не будет подан сигнал от передатчика
Вот фото в действии устройства
Приемник распознал первый вывод передатчика
Еще одно фото прибора в работе
Приемник распознал 16 вывод передатчика.
К сожалению с корпусом для приемника вопро с был не решен и испытания прибора проводили как есть на фото. По поводу индикации приемника скажу пару слов, если подаваемое значение на приемник меньше 10, то первая цифра показывающая десятки тухнет. Это сделано с целью хоть какой то экономии батареи. При полевых испытаниях прибор показал следующие результаты: длинна проверяемого кабеля составила 850 метров(длинней найти не удалось), максимальное сопротивление линии составило 3 кОм.
Что касается прошивки МК. Прошивал программой SinaProg: контроллер передатчика прошит на 8МГц внутренний генератор, остальное по умолчанию. Приемник прошит на 9.6 Мгц так же внутренний генератор, остальное по умолчанию.
При правильном монтаже приборы начинают работать сразу.
По многочисленным просьбам выложил видео работы прибора новой версии.
Источник
Самодельная прозвонка (пробник) для дома
Для проверки целостности электрической цепи обычно применяют мультиметры, индикаторы и различные прозвонки. Каждый из приборов обладает своими плюсами и минусами.
Мультиметр, безусловно, самый точный, однако цена на него кусается, им нужно уметь пользоваться, и он, скорее подходит для серьёзного ремонта электроники, нежели для бытового применения.
Индикатор стоит сущие копейки, но не отличается надёжностью. Его использование требует некоторого опыта. Вдобавок, работа с ними подразумевает касание человеком токоведущих частей. А это неприемлемо для новичков.
Оптимальным решением для дома послужит самодельная прозвонка. Такой прибор прост в применении, легко собирается «на коленке».
Сборка пробника
Всё необходимое лучше подготовить заранее. Перечень материалов краток, и включает:
2 маркера, с внутренним диаметром не менее 10 мм.
5-10 см проволоки в изоляции. Желательно медной. Сечение подбирается опытным путём исходя из толщины жал маркеров.
Медные гибкие провода длиной 50 см. Один толщиной с жало от ручки, второй потоньше.
Белый светодиод на 5 мм. Можно раздобыть в зажигалке, фонарике или купить в магазине радиодеталей.
Пара мизинчиковых батареек на 1,5 В.
Сборка элементарная, основные шаги таковы:
Разберите маркеры, избавьтесь от их начинки. Так, чтобы остался только пластмассовый корпус.
Разрежьте медную проволоку на 2 равные половинки. Снимите с их концов по 15 мм изоляции. С одной стороны их желательно заточить, а с другой нужно залудить.
В колпачках маркеров проделайте отверстия для проводов и светодиода.
С помощью проводов, соберите электрическую цепь как показано на фото и схеме.
Светодиоды и батарейки имеют полярность. Если у батареек «+» и «-» указаны на корпусе, то у светодиодов они определяются опытным путём. Т.е., если Вы подаёте на него напряжение, а он не светится, то попробуйте поменять местами его ножки.
Для надёжной пайки проводов, железные выводы батареек предварительно нужно обработать паяльной кислотой. Если у Вас её нет, то можно зачистить будущие места пайки надфилем и как можно скорее их залудить.
Поместите провода и батарейки внутрь маркеров. Оденьте колпачки на свои исходные места.
Заключительный этап – проверка. Если соединить медные жала прозвонки, то светодиод должен загореться.
Что можно им можно проверять дома?
Лампы накаливания (домашние на 220 В, автомобильные или даже от гирлянды). Для этого подключаем щупы к выводам лампочки. Свечение светодиода укажет на исправность осветительного прибора.
Электрические чайники, утюги, кипятильники . Прозвонка подключается к штепсельной вилке. Свечение так же указывает на исправность. Но есть один нюанс. При проверке чайника, сперва нужно нажать на его кнопу включения.
Проверка удлинителя . Перед началом диагностики, обязательно отключите его от сети 220 В. Вставьте щуп в отверстие розетки удлинителя. Другим щупом, коснитесь штырьков его вилки. На одном из них светодиод должен гореть, а на другом нет. Теперь повторите то же самое с другим отверстием.
Выключатели освещения и различные кнопки от чайников или пылесосов. Всё это, по сути, коммутирующие элементы, задача которых заключается в замыкании и размыкании электрической цепи. Обычно, они имеют 2 рабочих вывода. Подключите к ним прозвонку. Если кнопка рабочая, то свечение светодиода должно то появляться, то исчезать, в зависимости от положения кнопки. Перед проверкой подключенных к электросети выключателей, квартиру необходимо обесточить.
Обычные и автомобильные предохранители, пробки . Всё так же элементарно. При подключении нашего чудо-прибора к исправной детали, он подаст световой сигнал.
Если прибор собран правильно, то он надёжно прослужит Вам много лет.
Автор: Николай Борискин
Спасибо, что прочитали статью. Если Вам было интересно — станьте нашим подписчиком и поставьте лайк!
Источник
Простейший тестер-прозвонка своими руками
В повседневной работе электрикам, часто требуется проводить измерения напряжения, прозванивать цепи и провода на целостность.
Иногда требуется просто узнать, находится ли данная электроустановка под напряжением, обесточена ли розетка, например, прежде чем менять её, и тому подобные случаи.
Универсальным вариантом, который подходит для совершения всех этих измерений, является использование цифрового мультиметра, или хотя бы обычного стрелочного советского АВО — метра, часто называемого “Цешкой”.
Такое название вошло в нашу речь от именования прибора Ц-20 и более свежих версий советского производства.
Да, современный цифровой мультиметр очень хорошая штука, и подходит для большинства измерений проводимых электриками, за исключением специализированных, но часто нам не требуется весь функционал мультиметра.
Электрики часто носят с собой аркашку, которая представляет собой простейшую прозвонку, с питанием от батареек, и с индикацией целостности цепи на светодиоде или лампочке.
На фото выше двухполюсный индикатор напряжения. А для контроля наличия фазы пользуются индикатором отверткой. Также находят применение двух полюсные индикаторы, с индикацией, также как и в случае с индикатором отверткой, на неоновой лампе.
Но мы живем сейчас в XXI веке, а такими способами пользовались электрики в 70 — 80 годах прошлого века. Сейчас все это давно устарело.
Не желающие заморачиваться с изготовлением, могут купить в магазине прибор, позволяющий прозванивать цепи, а также он может показывать, путем загорания определенного светодиода приблизительное значение напряжения в проверяемой цепи. Иногда бывает встроена функция определения полярности диода.
Но такой прибор стоит не дешево, недавно видел в радиомагазине по цене в пределах 300, а с расширенной функциональностью и 400 рублей. Да, прибор хороший, слов нет, многофункциональный, но среди электриков часто попадаются люди творческие, имеющие знания по электронике, выходящие хотя бы минимально, за рамки базового курса колледжа или техникума.
Для таких людей и написана эта статья, потому что эти люди, которые собрали хотя бы одно или пару устройств, своими руками, они обычно могут оценить разницу в стоимости радиодеталей, и готового устройства.
Скажу по собственному опыту, если конечно будет возможность подобрать корпус для устройства, разница в стоимости может быть в 3, 5, и более раз низкой. Да придется потратить вечер на сборку, освоить для себя что-то новое, то чего раньше не знал, но эти знания стоят потраченного времени.
Для знающих людей, радиолюбителей, давно известно, что электроника в частном случае, это не более чем сборка своего рода конструктора ЛЕГО, правда со своими правилами, на освоение которых придется потратить какое-то время.
Зато перед вами откроется возможность самостоятельной сборки, а если потребуется то и починки, любого электронного устройства, начальной, а с приобретением опыта и средней сложности. Такой переход, от электрика к радиолюбителю, бывает облегчен тем, что у электрика уже есть в голове необходимая для изучения база, или хотя бы часть её.
Принципиальные схемы
Перейдем от слов к делу, приведу несколько схем пробников, которые могут быть полезны в работе электрикам, и пригодятся обычным людям при проведении проводки, и других подобных случаях. Пойдем от простого, к сложному. Ниже приведена схема самого простого пробника — аркашки на одном транзисторе:
Этот пробник позволяет прозванивать провода на целостность, цепи на наличие или отсутствие замыкания, а если потребуется, то и дорожки на печатной плате. Диапазон сопротивлений прозваниваемой цепи широкий, и составляет от нуля до 500 и более Ом.
В этом отличие этого пробника от аркашки, содержащей только лампочку с батареей питания, или светодиод, включенный с батареей, который не работает с сопротивлениями от 50 Ом. Схема очень простая и её можно собрать даже навесным монтажем, не утруждая себя травлением и сборкой на печатной плате.
Хотя если есть в наличии фольгированный текстолит, и позволяет опыт, лучше собрать пробник на плате.
Практика показывает, что устройства собранные навесным монтажом, могут перестать работать после первого падения, тогда как на устройстве, собранном на печатной плате, это никак не скажется, если конечно пайка была произведена качественно. Ниже приведена печатная плата этого пробника:
Изготовить её можно как путем травления, так и ввиду простоты рисунка, путем отделения дорожек на плате друг от друга бороздкой, прорезанной резаком, сделанным из ножовочного полотна. Изготовленная таким способом плата, будет по качеству не хуже протравленной. Конечно перед подачей питания на пробник, нужно убедиться в отсутствии замыкания между участками платы, например путем прозвонки.
Второй вариант пробника, который совмещает в себе функции прозвонки позволяющей прозванивать цепи до 150 килоОм, и подходящий даже для проверки резисторов, катушек пускателей, обмоток трансформаторов, дросселей и тому подобного.
И индикатора напряжения, как постоянного, так и переменного тока. При постоянном токе показывается напряжение уже от 5 вольт и до 48, возможно и более, не проверял. Переменный ток показывает 220 и 380 вольт легко.
Ниже приведена печатная плата этого пробника:
Индикация осуществляется путем загорания двух светодиодов, зеленого при прозвонке, и зеленого и красного при наличии напряжения.
Также пробник позволяет определить полярность напряжения при постоянном токе, светодиоды горят только при подключении щупов пробника в соответствии с полярностью.
Одним из плюсов прибора является полное отсутствие, каких либо переключателей, например предела измеряемого напряжения, либо режимов прозвонка – индикация напряжения. То есть прибор работает сразу в обоих режимах. На следующем рисунке можно видеть фото пробника в сборе:
Мной было собрано 2 таких пробника, оба до сих пор работают нормально. Одним из них пользуется мой знакомый.
Третий вариант пробника, который может только прозванивать цепи, провода, дорожки на печатной плате, но не может использоваться, как индикатор напряжения, является Звуковой пробник, с дополнительной индикацией на светодиоде. Ниже приведена его принципиальная схема:
Все, думаю, пользовались звуковой прозвонкой на мультиметре, и знают насколько это удобно. Не нужно при прозвонке смотреть на шкалу или дисплей прибора, либо на светодиоды, как это было сделано в предыдущих пробниках.
Если цепь у нас звонится, то раздается пищание с частотой примерно 1000 Герц и загорается светодиод.
Причем этот прибор, также как и предыдущие позволяет прозванивать цепи, катушки, трансформаторы и резисторы с сопротивлением до 600 Ом, чего бывает достаточно в большинстве случаев.
На рисунке выше приведена печатная плата звукового пробника. Звуковая прозвонка мультиметра, как известно, работает только при сопротивлениях, максимум до десятка Ом или немногим больше, этот прибор позволяет прозванивать значительно в большем диапазоне сопротивлений. Далее можно видеть фото звукового пробника:
Для подключения к измеряемой цепи, этот пробник имеет 2 гнезда, совместимых с щупами мультиметра. Все три пробника, про которые было рассказано выше, я собирал сам, и гарантирую что схемы 100% рабочие, не нуждаются в настройке и начинают работать сразу после сборки.
Фото первого варианта пробника показать не представляется возможным, так этот пробник был не так давно подарен знакомому. Печатные платы всех этих пробников для программы sprint–layout можно скачать в архиве в конце статьи.
Также, в журнале Радио и на ресурсах в интернете, можно найти множество других схем пробников, идущих иногда сразу с печатными платами. Вот только некоторые из них:
Прибор не нуждается в источнике питания и работает при прозвонке от заряда электролитического конденсатора. Для этого щупы прибора нужно воткнуть на короткое время в розетку.
При прозванивании горит LED 5, индикация напряжения LED4 — 36 В, LED3 — 110 В, LED2 — 220 В, LED1 — 380 В, а LED6 это индикация полярности.
Похоже, что этот прибор по функциональности, аналог приведенного в начале статьи на фото пробника монтера.
На рисунке выше показана схема пробника – фазоуказателя, который позволяет находить фазу, прозванивать цепи до 500 килоОм, и определять наличие напряжения до 400 Вольт, а также полярность напряжения.
От себя скажу, что возможно пользоваться таким пробником менее удобно, чем тем, про который было рассказано выше и который имеет для индикации 2 светодиода. Потому что нет четкой уверенности в том, что показывает этот пробник в данный момент, наличие напряжения или то, что цепь звонится.
Из его плюсов могу могу упомянуть только, что им можно определить, как уже было написано выше, фазный провод.
- И в заключение обзора приведу фото и схему простейшего пробника, в корпусе маркера, который я собрал давным давно, и который может собрать любой школьник или домохозяйка, если возникнет такая необходимость 🙂 Этот пробник пригодится в хозяйстве, если нет мультиметра, для прозвонки проводов, определения работоспособности предохранителей и тому подобных вещей.
На рисунке выше приведена нарисованная мною схема этого пробника, так чтобы его мог собрать любой человек, даже не знающий школьного курса физики. Светодиод для этой схемы нужно взять советский, АЛ307, который светится от напряжения в 1.5 Вольта. Думаю, прочитав это обзор, каждый электрик сможет выбрать себе пробник по вкусу, и по степени сложности. Автор статьи AKV.
Обсудить статью Обзор пробников электрика
Тестер своими руками — варианты изготовления, калибровка и настройка прибора
В этом небольшом обзоре рассмотрим возможность самостоятельного изготовления такого интересного и полезного в обиходе домашнем прибора, как простой тестер. Такой простой приборчик очень пригодится для оперативной проверки работоспособности радиодеталей и применения в быту.
- Несмотря на то, что в магазинах можно купить тестер по достаточно низкой цене, самостоятельная сборка такого небольшого прибора станет отличной практикой для любого начинающего любителя радиотехники.
Собранный прибор очень удобен и вполне может использоваться даже мастерами своего дела. Фото самодельного тестера вы можете увидеть в обзоре ниже.
Принципиальная схема простого тестера
Такой прибор включает в себя минимальное количество элементов для сборки, которые есть в обиходе практически в любом доме или легко при необходимости могут быть куплены в любом магазине радиодеталей или даже в хозяйственном магазине.
По своей сути это единственный мультивибратор, который собран на транзисторной основе. С его помощью происходит генерация импульсов прямоугольного типа.
- Контрольная цепь тока подключается к элементам мультивибратора на последовательной основе встречно и параллельно с использованием двух цветных светодиодов.
В итоге цепь, которая подлежит проверке с помощью устройства, тестируется током переменного типа, что обеспечивает высокую точность проверки.
Принципы работы тестера
С основного рабочего компонента, которым является мультивибратор, снимают переменный ток, который по своей амплитуде примерно равен тому, который подаётся источником питания. В качестве конденсирующего элемента подойдёт любой, выше 3.7 В, например на 16 или 25 В.
Естественно, что с разомкнутой цепью светодиоды не загораются. При замыкании цепи и прохождении тока по цепи загораются светодиоды. Всё просто.
Таким приборчиком можно очень быстро и качественно проверить любой элемент на работоспособность или цепь на разрыв в ней. Очень удобно для использования в домашних условиях, особенно не особо хорошо подготовленным человеком. Тестер транзисторов своими руками — что может быть проще?
Собирается такое устройство либо с применением простой печатной платы или же способом навесного монтирования. Также в область применения входит возможность определения «плюса» и «минуса», когда вам не известно, где они у исследуемого элемента. Для использования в качестве батареи можно использовать 2-3 батарейки AAA для минимизации размера устройства.
Второй способ изготовления компактного тестера для использования в автомобиле. У такого прибора будет буквально 2 главные рабочие функции — возможность показания напряжения «на массе» и наличие в цепи 12 В. Причём, всё это будет доступно буквально при присоединении одного проводка к сети машины.
Что понадобится для создания такого функционального приспособления:
- обычный медицинский шприц на 5 см3;
- батареи LR-44 в количестве 4 штук;
- два маленьких светодиодных элемента с резисторным компонентом;
- маленький кусочек стальной проволочки;
- проводок с зажимом на его конечной части.
Схемы самодельных тестеров автомобильного типа
- Встречным способом параллельно спаиваем оба используемых светодиода;
- Через применяемый резистор один из концов необходимо припаять крепко к стальной проволоке;
- Прямо внутрь корпуса шприца устанавливаете одну за другой батарейки. Выбраны именно такие, поскольку они прекрасно помещаются в пятикубовый шприц;
- Щуп пластиковой трубкой изолируется от шприца, проверяете работоспособность непосредственно в машине на практике;
- Проверяем, засветятся ли светодиоды на элементе в 12В.
Итак, применение самими вами сделанного тестера более, чем обусловлено в быту.
Поверьте, что такой небольшой прибор обязательно пригодится если не в ежедневном быту, то в те моменты, когда нужно что-то проверить в электросети домашней или в автомобиле.
- Изготовление тестера своими руками способно серьёзно поднять самооценку любого человека, который не верит в то, что своими руками способен сделать что угодно — важно лишь желание.
Фото тестеров своими руками
Прозвонка кабеля и проводов: методы, схемы, тестеры
При проведении электромонтажных работ может понадобиться прозвонка кабеля, например, когда производится маркировка жил и проводов, проверка изоляции и целостности проводки, а также поиск места обрыва электрокабеля. Рассмотрим, какими способами можно провести тестирование, а также необходимое для этой цели оборудование.
Методы
Способы тестирования зависят от того, с какой целью оно выполняется. Для проверки целостности кабеля на предмет обрыва или электрической связи между его жилами (короткого замыкания) прозвонку можно осуществить тестером на основе батарейки и лампочки или же воспользоваться для этой цели мультиметром. Последний предпочтительнее.
Несмотря на то, что цена мультиметра выше, чем примитивного устройства, рекомендуем купить его, в хозяйстве этот прибор всегда пригодится.
Простейшее устройство для прозвонки электрического кабеля
Для проверки кабеля мультиметр должен быть включен в соответствующем режиме (изображение диода или зуммера).
Мультиметр, переведенный в режим прозвонки
Методика тестирования следующая:
При проверке провода на обрыв тестер подключается к его концам так, как это показано на рисунке. Если кабель целый – лампочка будет светиться (при тестировании мультиметром раздастся характерный звуковой сигнал).
Проверка на обрыв
Пояснения к рисунку:
- A –электрокабель;
- B – жилы кабеля;
- С – источник питания (батарейка);
- D – лампочка.
Если кабель уже уложен, то с одной его стороны необходимо соединить жилы вместе и прозвонить провода на другом конце;
Второй вариант проверки силового кабеля
когда проверяется наличие электрической связи между жилами кабеля, щупы тестера подключают к разным проводам. В отличие от предыдущего примера, скручивать жилы с другой стороны не требуется. Если между проводами нет короткого замыкания, лампочка гореть не будет (при тестировании мультиметром не раздастся звуковой сигнал).
Прозвонка многожильных кабелей с целью их маркировки
При маркировке многожильных кабелей можно использовать описанные выше методы, но существуют способы, позволяющие существенно упростить этот процесс.
Способ 1: применение специальных трансформаторов, у которых имеется несколько отводов вторичной обмотки. Схема подключения такого устройства показана на рисунке.
Использование трансформатора для маркировки
Как видно из рисунка, первичная обмотка такого трансформатора подключена к сети питания, один конец вторичной обмотки подсоединен к защитному экрану кабеля, остальные выводы — к его жилам. Для маркировки проводов необходимо замерить напряжение между экраном и каждым проводом.
Способ 2: использование блока резисторов с разным номиналом, подключенного к проводам кабеля с одной стороны, как показано на рисунке.
Резисторы, подключенные к выводам кабеля
Для определения кабеля достаточно замерить сопротивление между ним и экраном. Если вы хотите сделать такой прибор своими руками, то следует подбирать резисторы с шагом не менее 1 кОм, чтобы уменьшит влияние сопротивления провода. Также не следует забывать, что номинал резисторов имеет определенную погрешность, поэтому предварительно замерьте их омметром.
При проверке телефонного многожильного кабеля монтажниками не редко используется гарнитура для прозвонки, например ТМГ 1. Собственно, это две телефонные трубки, к одной из которых подключена батарейка на 4,5 В. Такое несложное приспособление позволяет не только проверить кабель, а и согласовывать свои действия при монтаже и тестировании.
Прозвонка телефонной трубкой
Проверка изоляции
Для тестирования изоляции мегаомметром или мультиметром принцип прозвонки такой же, как при поиске электрической связи между жилами кабеля.
Алгоритм тестирования следующий:
- устанавливаем на приборе максимальный диапазон — 2000 кОм;
- подсоединяем щупы к проводам и смотрим, что показывает дисплей прибора. Учитывая, что провода обладают определенной емкостью, пока она не зарядится, показания могут изменяться. Через несколько секунд табло прибора может отображать следующие значения:
- единица, это говорит о том, что изоляция между проводами в норме;
- ноль – между жилами короткое замыкание;
- какие-то средние показания, это может быть вызвано как «утечкой» в изоляции, так и электромагнитными помехами. Для установления причины следует переключить прибор на максимальный диапазон 200 кОм. При неисправной изоляции на табло отобразятся стабильные показания, если они будут меняться, то можно с уверенностью говорить об электромагнитных помехах.
Внимание! Перед проверкой изоляции электропроводки ее необходимо обесточить. Второй важный момент – проводя измерения, не прикасайтесь к щупам руками, этим можно внести погрешности.
Видео: Прозвонка провода — проверка целостности.
Поиск места обрыва
После того, как был обнаружен обрыв в электропроводке, необходимо локализировать место, где это произошло.
Для прозвонки в этом случае можно использовать тон генератор, например такой как Cable Tracker MS6812R или TGP 42.
Такие устройства позволяют с точностью до сантиметра установить место обрыва, а также определить трассу скрытой проводки, помимо этого приборы имеют и другие полезные функции.
Модель MS6812R
Приборы данного типа включают в себя генератор звукового сигнала и датчик, присоединенный к наушнику или динамику. При приближении датчика к месту обрыва пар кабеля UTP или жил электропроводки тональность звукового сигнала меняется. Когда производится тоновая прозвонка, перед подключением звукового генератора необходимо обесточить проводку, в противном случае прибор выйдет из строя.
Заметим, что при помощи этого прибора можно прозванивать как силовые, так и слаботочные кабеля, например, проверить целостность витой пары, радио проводки или линий связи. К сожалению, такие устройства не позволят определить правильность подключения, для этой цели применяется специальное оборудование – кабельные тестеры.
Тестеры для кабеля
Данный класс приборов позволяет проверить как целостность кабеля, так и правильность его подключения, что очень важно для сетей интернет провайдеров. Это могут быт простые устройства, проверяющие кроссоверность или сложные приборы на PIC контролере, у которых есть АЦП и встроенный мультиплексор.
Многоцелевой кабельный тестер Pro’sKit MT-7051N на микроконтроллере
Естественно, что стоимость таких устройств не располагает к их бытовому использованию.
Самодельная бесконтактная прозвонка
Ниже показа схема простого бесконтактного детектора обрыва, она может быть собрана в течение одного вечера. Учитывая небольшое количество деталей, можно не утруждать себя изготовлением печатной платы, а применить навесной монтаж.
Схема детектора
Перечень необходимых радиодеталей:
- переменное сопротивление R1 – 100 кОм;
- резистор R2 – от 4 до 8 МОм;
- конденсаторы электролитического типа: C1 и С3 – 220 мкФ, С2 – 33 мкФ;
- конденсатор керамического типа с емкостью 0,1 мкФ;
- D1 – микросхема LAG 665 (желательно в корпусе DIP);
- SP – обычный наушник от телефонной гарнитуры.
Схема может питаться от источника с напряжением от 2 до 5 вольт.
Щуп (Р) изготовлен на базе обычной спицы из колеса велосипеда.
Щуп для самодельного детектора обрыва
- Правильно собранная бесконтактная прозвонка кабеля не требует настройки.
- Видео: Прозвонка кабеля своими руками. Как выполняется прозвонка проводов с помощью лампочки и батарейки
- Если посчитать стоимость всех необходимых деталей, нетрудно убедиться, что полученный результат будет на порядок меньше , чем стоимость услуг по обнаружению обрыва проводки, указанных в строительных сметах.
Кабельный тестер своими руками
Предлагаю Вашему вниманию разработку которая облегчит жизнь людям занимающихся монтажом многожильных кабелей. Эта тема не новая, но я хотел сделать что то свое. А идею прибора предложил мой коллега по работе. Он часто занимается монтажом и такой прибор ему очень нужен.
Кабель-тестер состоит из передатчика который имеет 22 вывода и генерирует 22 цифровых значения от 1 до 22, и приемника который эти значение принимает распознает и отображает на индикаторе.
Пользоваться прибором очень просто с одной стороны прозваниваемого кабеля к нужным жилам подключаем цифровые выводы передатчика и общий, который можно подключить либо к экрану кабеля либо к цветной жиле что бы на другом конце кабеля было проще искать ее.
С другой стороны подключает общий приемника, а входом поочередно касаемся каждой жилы кабеля и смотри на индикатор. При распознавании приемником подаваемого сигнала от передатчика будет выведено цифровое значение на индикатор.
Вот схема передатчика
Готовая печатная плата
И фото прибора в корпусе.
Вот схема приемника
Такое хаотичное подключение 7-сегментного индикатора вызвано тем что рисовалась сначала печатная плата и как было удобно расположить проводники от индикатора к микросхемам так и располагали.
Печатная плата приемника
При включении приемника на индикаторе выводятся прочерки пока не будет подан сигнал от передатчика
Вот фото в действии устройства
Приемник распознал первый вывод передатчика
Еще одно фото прибора в работе
К сожалению с корпусом для приемника вопрос был не решен и испытания прибора проводили как есть на фото.
По поводу индикации приемника скажу пару слов, если подаваемое значение на приемник меньше 10, то первая цифра показывающая десятки тухнет. Это сделано с целью хоть какой то экономии батареи.
При полевых испытаниях прибор показал следующие результаты: длинна проверяемого кабеля составила 850 метров(длинней найти не удалось), максимальное сопротивление линии составило 3 кОм.
Что касается прошивки МК. Прошивал программой SinaProg: контроллер передатчика прошит на 8МГц внутренний генератор, остальное по умолчанию. Приемник прошит на 9.6 Мгц так же внутренний генератор, остальное по умолчанию.
- При правильном монтаже приборы начинают работать сразу.
- По многочисленным просьбам выложил видео работы прибора новой версии.
- Скачать список элементов (PDF)
Прикрепленные файлы:
РадиоКот :: Пробник для прозвонки монтажа
Добавить ссылку на обсуждение статьи на форумеРадиоКот >Схемы >Аналоговые схемы >Измерения >
Теги статьи: | Добавить тег |
Пробник для прозвонки монтажа.
Все вы неоднократно сталкивались с поиском случайно замкнутых при пайке проводников на платах, между ножками микросхем в корпусах поверхностного монтажа или под ними. Или же наоборот для проверки соединения, нахождения обрывов или поиска проводников, подключенных в одну точку, так называемый «металлический» контакт.
Для этого многие пользуются обычным тестером с режимом прозвонки. Но тестер неудобен тем, что зачастую порог срабатывания прибора высокий, порой несколько сотен Ом. Да и p-n переходы тоже влияют на прозвонку.
Для повышения удобства таких поисков я уже много лет применяю специальный пробник, порог срабатывания которого настроен на сопротивление измеряемой цепи менее 10 Ом. Пробник не реагирует на p-n переходы. Идея взята мной из журнала Радио, но изначально она мне не понравилась по нескольким пунктам: 1. Напряжение питания составляет 5В.
Автор говорит о применении внешнего питания; 2. Достаточно большой ток потребления, чтоб всерьез рассматривать таблеточные элементы в качестве источников питания; 3. Применены громоздкие элементы, включая микросхему и излучатель ЗП-3.
Исходная схема из журнала приведена ниже:
Сразу оговорюсь, что данная статья посвящена уже второй доработке данной схемы для снижения габаритов, потребляемого тока и полным отказом от звукового сигнала. Надоел он мне жутко. В первой доработке, собранной в 2000 году, обвязка VT1 — VT3 осталась без изменений.
Вместо генератора на микросхеме использовался мультивибратор на транзисторах КТ315, причем в одно плечо мультивибратора была включена цепочка из светодиода, диаметром 3мм и динамического излучателя от китайского будильника. Получилась и световая, и звуковая сигнализация.
Достоинством данной схемы была возможность подбора более приятного для ушей звука, чем писк пищалки со встроенным генератором. Минусом — разве что сложность подбора элементов мультивибратора при макетировании для получения устойчивой генерации.
Питание осуществлялось от трех последовательно соединенных элементов AG13 (таблетка). Хватало их не сильно надолго ввиду прожорливости схемы, о чем я выше уже написал.
В итоге мне это надоело, и я решил переработать данную схему в пользу снижения потребления, снижения напряжения питания, применение более удобного литиевого элемента питания CR2032 и отказа от звуковой сигнализации. Пробник получился миниатюрным и благодаря своей конструкции при использовании световой сигнал всегда виден.
Собственно сама схема.
и фотографии получившегося пробника
Практически все элементы расположены за кнопкой, размеры которой 12х12 мм. Второй щуп — от китайского тестера. Заменил только саму иглу на такую же, как на фото выше. Фото второго щупа не привожу, ничего интересного нет.
Длина провода 0,5м. Дополнительного корпуса не предусматривалось, хотя в планах было покрыть лаком проводники идущие к разъему питания для избежания возможного КЗ. Чего пока так и не сделал. Видимо жду КЗ.
В данном виде пробник эксплуатируется уже полгода.
Размещение компонентов на плате. Светодиод желательно поставить SMD.
Файлы: Печатная плата в формате DipTrace.
Вопросы, как всегда в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
«Электроника и Радиотехника»
«КОНТРОЛЬКА» и «ПРОЗВОНКА» для ЭЛЕКТРИКА.
Проверяя электрическую схему станка в шумных
цехах не совсем удобно пользоваться измерительными приборами,
приходиться одновременно держать щупы прибора, смотреть на его
показания и еще щёлкать переключателем режима работ.
И хотя
«ПРАВИЛА БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ ЭЛЕКТРОУСТАНОВОК ПОТРЕБИТЕЛЕЙ»
запрещают пользоваться контрольными лампами, электрики часто для
проверки исправности электрических цепей, используют простую
контрольную лампу, которая используются в качестве удобного и
многофункционального «прибора». Хотя,
дело-то в общем не в лампочке а в том, кто ее держит — напортачить
можно и с указателем напряжения и с поверенным прибором, если он
находиться в руках безответственного работника или того кто не умеет с
ним обращаться должным образом.
А вот удобства при грамотном использовании «контрольки» говорят сами за себя:
• По накалу лампы можно визуально оценить величину приложенного напряжения;
• Свечение лампы накаливания хорошо заметно при ярком освещении;
• Благодаря низкому входному сопротивлению, не дает ложных срабатываний
от наведенного напряжения («наводки») и «через нагрузку»;
• Позволяет проверять цепи защитного зануления, работу (или
неисправность) УЗО, и ко всему прочему может использоваться как
переносной источник света.
Для безопасного использования контрольная лампа конструктивно
должна быть заключена в футляр из изоляционного материала, прозрачного
или с прорезью для прохождения светового сигнала. Проводники должны
быть гибкими, надежно изолированными, длиной не более 0.5 м, для
исключения возможности замыкания при прохождении их в общем вводе,
выходить из арматуры в разные отверстия, а на свободных концах иметь
жесткие электроды, защищенные изолированными ручками, длина голого
конца электрода не должна превышать 10 — 20 мм. Для изготовления простого и лёгкого в повторении варианта «контрольки»:
берем две лампы 220V 15W для холодильника, спаиваем их последовательно
между собой, в качестве проводников можно использовать щупы от
мультиметра с пластмассовыми держателями на концах, провода в которых
желательно заменить более качественными. Фланцы на таких щупах
предотвращают возможность попадания пальцев на открытые концы щупов и
токопроводящие части установок. Затем помещаем обе лампы в подходящий
футляр (например, в отрезок прозрачного шланга) и выводим провода
наружу.
В процессе проверки целостности проводки следует строго соблюдать
правила электробезопасности, «контролька» должна быть подвешенной на
проводах, при проведении проверки в близости к полу, её нужно
отодвигать от себя как можно дальше.ПРОБНИК – ИНДИКАТОР.В
тех же случаях (условиях), когда удобнее воспользоваться «контролькой»
а не прибором, то есть в простых схемах для предварительной оценки
функционирования узлов при ремонте и наладке электрических приборов и
электронных устройств, где не нужна точность измерения. Часто может
оказаться полезным пробник-индикатор, который позволяет определить в
проверяемой цепи:• Наличие переменного или постоянного напряжения от 12 до 400V,• Фазного провода в цепях переменного тока,• Ориентировочной величины напряжения,• Полярность цепей постоянного тока, •
Производить «прозвонку» целостности цепей, в том числе обмоток
электродвигателей, пускателей, трансформаторов, контактов, • Проверить исправность диодов, транзисторов, тиристоров и т.д. С
этими требованиями хорошо справляются различные индикаторы со световой
и звуковой индикацией, которые просты и надежны в работе.НЕСЛОЖНЫЙ ПРОБНИК, снабженный двумя светодиодами и неоновой лампой, позволяет проверить наличие фазы в сети,
обнаружить короткое замыкание и наличие сопротивления в цепи. С его
помощью можно проверять катушки магнитных пускателей и реле на обрыв,
позванивать концы дросселей, двигателей, разбираться с выводами
многообмоточных трансформаторов, проверять выпрямительные диоды и
многое другое.
Питается пробник от батареи «Крона» или любой другой аналогичного типа
напряжением 9V, потребляемый ток при замкнутых щупах составляет не
более 110 мА, при разомкнутых щупах энергия не потребляется, что
позволяет обойтись без выключателя питания и переключателя режима работ.
Работоспособность устройства сохраняется при снижении напряжения
питания до 4V, при разряженной батарее (ниже 4V) может работать как
указатель сетевого напряжения.
При прозвонке цепи сопротивлением от нуля до 150 Ом загорается красный
и желтый светодиоды, при сопротивлении цепи от 150 Ом до 50 кОм горит
только жёлтый светодиод. При подаче на щупы сетевого напряжения
220-380V загорается неоновая лампа, и слегка мерцают светодиоды.
Пробник выполнен на трёх транзисторах, в исходном состоянии все
транзисторы закрыты, так как щупы пробника разомкнуты. При замыкании
щупов напряжение положительной полярности через диод VD1 и резистор R5
поступает на затвор полевого транзистора V1, который открывается и
через переход база-эмиттер транзистора V3 соединяется с минусовым
проводом источника питания. Вспыхивает светодиод VD2. Транзистор V3
также открывается, загорается светодиод VD4. При подключении к щупам
сопротивления в пределах 150 Ом-50 кОм светодиод VD2 гаснет, так как он
зашунтирован резистором R2, сопротивление которого относительно меньше
измеряемого, и напряжение на нём недостаточно для его свечения. При
подаче на щупы сетевого напряжения вспыхивает неоновая лампа HL1.
На диоде VD1 собран однополупериодный выпрямитель сетевого напряжения.
При достижении напряжения на стабилитроне VD3 (12V) открывается
транзистор V2 и тем самым запирает полевой транзистор V1. Светодиоды
слегка мерцают.
ДЕТАЛИ: Полевой транзистор TSF5N60M заменим на 2SK1365, 2SK1338 от
импульсных зарядных устройств видеокамеры и т.п. Транзисторы V2, V3
заменимы на 13003A от энергосберегающей лампы. Стабилитрон Д814Д,
КС515А или аналогичный с напряжением стабилизации 12-18V. Резисторы
малогабаритные 0,125 вт. Неоновая лампа от индикатора-отвёртки.
Светодиоды любые, красного и желтого свечения. Диод выпрямительный
любой с током не менее 0,3А и обратным напряжением более 600V,
например: 1N5399, КД281Н.
Пробник при правильном монтаже начинает работать сразу после подачи
питания. При наладке диапазон 0-150 Ом можно сместить в ту или иную
сторону подбором резистора R2. Верхняя граница диапазона 150 Ом-50 кОм
зависит от экземпляра транзистора V3.
Пробник размещают в подходящем корпусе из изоляционного материала,
например в корпусе от зарядного устройства мобильного телефона. Спереди
выводят штырь-щуп, а с торца корпуса провод с хорошей изоляцией со
штырём (или крокодилом).
Схемы простых пробников
Такие полезные радиолюбительские пробники удобны тем, что имеют простую конструкцию, содержат минимум элементов и при этом универсальны – можно быстро проверить работоспособность практически любых широко применяемых транзисторов (кроме полевых) и звуковых или ВЧ-каскадов.
Транзисторные пробники
Ниже приведены две схемы транзисторных пробников. Они представляют собой простейшие автогенераторы, где в качестве активного элемента используется проверяемый транзистор. Особенностью обеих схем является то, что с их помощью можно проверять транзисторы не выпаивая их из схемы.
Также можно таким пробником определить цоколевку выводов и структуру (p-n-p, n-p-n ) неизвестных вам транзисторов опытным путем, просто попеременно подключая его щупы к разным выводам транзистора. При исправном транзисторе и правильном его подключении раздастся звуковой сигнал.
Никакой, даже маломощный транзистор вы при этом не повредите (при неправильном его включении), так как токи при проверке очень малы и ограничены другими элементами схемы. Первая схема с трансформатором:
Аналогичный трансформатор можно взять из любого старого карманного транзисторного приемника, например «Нева», «Селга», «Сокол» и аналогичного (это – переходной трансформатор между каскадами приемника, а не тот, который стоит на выходе у динамика!).
При этом вторичную обмотку трансформатора (она со средним выводом) надо уменьшить до 150 – 200 витков. Конденсатор может быть емкостью от 0,01 до 0,1 мкФ, при этом изменится только тональность звука при проверке.
При исправном проверяемом транзисторе в телефонном капсюле, подключенном ко второй обмотке трансформатора, раздастся звук.
Второй пробник бестрансформаторный, хотя принцип работы аналогичен предыдущей схеме:
Пробник собирается в подходящем корпусе небольших размеров. Деталей немного и схему можно спаять навесным монтажом, прямо на контактах переключателя. Батарея типа «Крона». Переключатели – с двумя группами контактов на переключение, например типа «П2-К».
Щупы «Эмиттер», «База» и «Коллектор» — провода разных цветов (лучше сделать так, чтобы буква цвета провода соответствовала выводу транзистора. Например: :коллектор – красный или коричневый, база — белый, эмиттер – любой другой цвет). Так удобнее будет пользоваться.
На концы проводов нужно припаять наконечники, например из проволоки или тонких длинных гвоздей. Припаять провод к гвоздю можно на таблетке простого аспирина (ацетилсалициловая кислота).
В качестве звукового излучателя следует взять высокоомный телефонный капсюль (типа «ДЭМШ» или, например, из телефонной трубки старых типов аппаратов), потому что громкость звука у них достаточно высокая. Или же использовать высокоомные наушники.
Пробник транзисторов, собранный по этой схеме, я лично использую уже много лет и он реально работает без всяких нареканий. Можно проверять любые транзисторы – от микромощных, до большой мощности.
Только вот оставлять пробник с включенной батареей надолго не следует, потому что батарейка быстро сядет.
Поскольку схема собиралась мной много лет назад, то использовались германиевые транзисторы типа МП-25А (или любые из серии МП-39, -40, -41, -42).
Вполне возможно, что подойдут и современные кремниевые транзисторы, но лично мною такой вариант на практике не проверялся. То есть схема будет, конечно, работоспособна как генератор, но как будет себя вести при проверки транзисторов без выпайки их из схемы, я сказать затрудняюсь. Потому что ток открывания германиевых элементов меньше, чем у кремниевых (типа КТ-361, КТ-3107 и др.).
Пробник звуковых и ВЧ-каскадов
Для этих целей можно сделать очень простой пробник-мультивибратор на двух транзисторах.
Таким пробником можно быстро найти неисправный каскад или активный элемент (транзистор или микросхему) в неработающей схеме. При проверке звуковых каскадов (усилителей, приемников и т.д.
) его щуп Х2 нужно подключить к общему проводу (GND) проверяемой схемы, а щупом Х1 касаться поочередно выходных и входных точек каждого каскада, начиная от выхода всего устройства.
Сигнализатором исправности/неисправности в данном случае является динамик (или наушники) проверяемого устройства.
Например, сначала подаем сигнал на вход оконечного каскада (питание проверяемого устройства должно быть включено!) и, если звук в динамике есть, значит выходной каскад исправен. Затем касаемся щупом входа предоконечного каскада и т.д., двигаясь в сторону входных каскадов устройства. Если на каком-то из каскадов звука в динамике не будет, то здесь и следует искать неисправность.
Из-за простоты схемы этот пробник-генератор помимо основной частоты (около 1000 Гц) выдает и многочисленные гармоники, кратные основной частоте (10, 100, … к Гц). Поэтому его можно использовать и для высокочастотных каскадов, например, приемников.
Причем щуп Х2 в этом случае не обязательно даже подключать к общему проводу проверяемого устройства, сигнал будет поступать на проверяемые каскады за счет емкостной связи. При проверке работоспособности приемника с магнитной антенной достаточно приблизить к антенне щуп Х1.
Конструктивно этот пробник может быть сделан на плате из фольгированного текстолита и выглядеть так:
В качестве вкл./выкл. питания можно использовать микропереключатель (микрик, кнопку) без фиксации. Тогда питание на мультивибратор будет подаваться при нажатии на эту кнопку. Автор статьи: Барышев А.
Источник