Пищалка
Создание схем для начинающих действительно очень сложная задача. Каждый раз приходится находить компромисс между надёжностью, простотой, повторяемостью, «не убиваемостью» и, в тоже время, она (схема) должна быть интересной, способной повести за собой и быть информативной. Невозможно разработать устройство, которое в равной степени будет отвечать всем этим качествам одинаково для разновозрастных групп учащихся. И чем они младше, тем это сделать сложнее! В этой статье я хочу рассказать о конструкциях, которые с удовольствием повторяют четырёх классники. Да, новизны схемотехнических решений здесь мало (если не сказать больше – нет). Но есть система и надёжность конструкций, их высокая повторяемость и низкая себестоимость. И я не буду утруждать теорией, так как для ученика четвёртого класса знать: это резистор, это конденсатор, а это транзистор и у него три ножки (. ) – уже большое достижение. По этой же причине я не буду приводить разводку печатного монтажа, так как травить платы в этом возрасте нельзя согласно элементарным правилам техники безопасности и здравого ума. Монтаж выполняется навесным способом на куске картона под руководством педагога или родителя.
«Сердцем» всех рассматриваемых мною устройств будет простейший звуковой генератор, выполненный на однопереходном транзисторе КТ117 и, путем не сложных модернизаций, мы будем получать разные потребительские качества.
Часто подобные пищалки называют «отпугиватель комаров», но, кто бы выступил добровольным донором и на практике доказал бы эффективность (не эффективность) подобных устройств? Лично я предпочитаю пользоваться химическими реагентами. Но надо же, как то сподвигнуть ребёнка к повторению схемы! А так…МЫ ПУГАЛИ КОМАРА!
Просто пищать не интересно. Последовательно с батарейкой устанавливаем макет ключа и имитируем работу телеграфом. И, бойтесь школьные учителя, пищит противно, тон высокий, местоположение генератора в пространстве локализируется на слух тяжело. Но когда же похвастать своей конструкцией перед сверстниками как не на уроке?
Эту схему легко трансформировать в звуковой маячок. Для этого часто рекомендуют запитать весь генератор через мигающий светодиод. Это не совсем верно. Да, схема работать будет, но закрытый светодиод (он не светится) всё равно пропускает ток через себя, так как его p-n переходы включёны в прямом направлении. Частота генерации схемы зависит и от напряжения питания, вследствие чего звучание получается рванным – громкий высокий тон чередуется с тихим низким тоном. Устранить этот недостаток можно, если ввести управление мигающим светодиодом по второй базе транзистора.
Ещё одой интересной трансформацией исходной схемы можно признать введение зависимости тона звучания генератора от освещенности. Для этого в схему следует ввести фототранзистор PTR1, управляя с помощью него однопереходным транзистором со стороны эмиттера. Генератор пищит ещё противней, но, сколько радости у ребёнка вызывает тот факт, что звук совершенно разный у окна и в нутрии комнаты!
Ну и, конечно же, двух тональная сирена, а как без неё? Без неё не обходится ни одна милицейская (полицейская) машина! Для организации двух тонального звучания вводим управление однопереходным транзистором по эмиттеру с помощью опять-таки мигающего светодиода. Эту конструкцию полезно будет вставить в игрушечный автомобиль.
Если есть желание построить многотональный автомат звуковых эффектов, то необходимо применить в качестве управляющего светодиода трехцветный мигающий диод, или включить три различных с разным свечением (красный, синий, зелёный как это сделано здесь) диода. При желании увеличить громкость звучания необходимо применить любой усилитель звуковой частоты, для этого динамик необходимо поменять на резистор с сопротивлением 100 Ом и с него снимать сигнал для УНЧ.
Рассмотренные мною схемы позволяют стимулировать младших школьников к изучению самых основ радиоэлектроники, могут быть полезны в системе дополнительного образования, не содержат большого количества деталей и не вызывают трудностей при их повторении.
Источник
Ленточная пищалка? –Да нет ничего проще!
Сейчас расскажу, как сделать своими руками ВЧ динамик, так сказать, на уровне мировых стандартов. Будет вам и качество звука не хуже «Фунтек», и доступность деталей, и легкость в повторении. В общем, идеальный набор для конструктора-меломана, у которого есть золотые руки, гениальная голова, утонченный музыкальный слух…но нет денег.
Итак, чтобы собрать излучатель хорошего звука нужен сильный магнит. Неодимовый магнит стоит дорого — это аксиома. Где же можно его взять с минимальными затратами? В старых жестких дисках!
Разумеется, одним магнитом обойтись можно, но лучше не мелочиться в таком вопросе, тем более для себя, любимого!
Не трудно догадаться, что чем больше окажется в наших трудолюбивых руках этих самых кривых магнитиков, тем громче будет пищать «пищалка». В общем, сколько найдете их — все в дело! Единственное условие — толщина (высота) должна быть одинаковая. Далее будет понятно почему.
Итак, вырезаем стальную (магнитную, т.к. нержавейка ни в коем случае не подойдет!) пластину с размерами 155х45х4 мм и приклеиваем к ней «Моментом» магнитики (в данном примере толщина каждого 4 мм).
Из полосы стали, купленной в магазине (здесь важна ровная геометрия пластин) отрезаем две полоски по 175 мм.
Затем на наждаке (точильный круг) обтачиваем одну грань пластины для придания соответствующей формы:
Такая форма концентрирует силовые линии и усиливает магнитное поле в месте расположения ленты-излучателя. Забегая вперед, покажу это место на собранном излучателе:
Но вернёмся назад и продолжим по порядку.
Поверх магнитов наносим две дорожки эпоксидного клея, так чтобы центр оставался чистым. Стальные пластины прижимаем друг к другу через временную пластмассовую полоску-прокладку (я использовал деталь от детского конструктора) и медленно подносим к нижнему магниту. Пластины с громким «чпок!» примагничиваются. И теперь аккуратно (да прибудет с нами Сила!) сдвигаем их вверх вдоль магнитов, следя, что бы конструктор-разделитель не выскочил. Получаем такую конструкцию.
Как только клей высохнет, вынимаем конструктор-разделитель. Стальные пластины прекрасно держатся в нужном нам положении на магнитной подложке.
На две картонные полоски приклеиваем залуженные контакты-полоски медной фольги. Полоски должны огибать картон (как скоба) и служить контактами с обоих сторон. Затем картонки крепим к стальным пластинам с изнаночной стороны, рядом с отверстиями для крепления динамика.
Начинаем готовить ложе для мембраны. Вырезаем полоску из тонкого ворсистого материала, приклеиваем на видимую часть магнитов. Не забываем сделать загиб (утолщение) на краях. Полоска будет работать в качестве легкого поглотителя звука обратной стороны мембраны и её механического ограничителя, в случае нештатного режима (амплитудной перегрузки). А утолщение на концах поднимет мембрану до уровня магнитного зазора.
Переходим к ювелирной работе, к мембране-ленте. Вырезаем из фольги конденсатора полоску шириной 7 мм. Если нет конденсатора, можно вырезать из пищевой фольги. В такой фольге отлично получается буженина.
Вариант из фольги доступнее, но потребует немного изменить количество витков первичной обмотки согласующего трансформатора. Это связано с тем, что фольга для запекания более толстая и будет иметь меньшее электрическое сопротивление.
Далее, гофрируем ленту между двумя шестеренками или между зубчиками крышек от зубной пасты и припаиваем к площадкам-контактам, которые мы заблаговременно приклеили к картонным полоскам.
Обычной пальчиковой батарейкой «узнаем» полярность нашего излучателя. Плюс и минус обозначаем, увидев выталкивание ленты наружу.
Для ленточного излучателя ещё потребуется согласующий трансформатор. Намотать его можно на кольце, взятом из компьютерного блока питания, или использовать любое подходящее кольцо, будь то ферритовое, из пермаллоя или тороидального железа.
- 25 витков первичной обмотки, диаметром 0.65 мм,
- 3 витка вторичной обмотки, диаметром 2х1.6 мм.
Подключение «автотрансформатором» улучшает проникновение высокочастотных составляющих к ленте от усилителя.
Согласующий трансформатор приклеиваем с тыльной стороны излучателя и припаиваем выводы на контактные площадки.
Лицевую сторону с лентой накрываем подходящей предохранительной металлической сеткой. В силу наличия магнитного поля она будет держатся самостоятельно.
Собственно, всё готово. Включаем через подходящий фильтр к НЧ динамику и можно слушать музыку.
Хочется обратить внимание, что, с одной стороны, такая классическая конструкция ленточного динамика позволяет сэкономить на количестве магнитов. С другой, амплитуда колебаний весьма ограничена узким зазором. Поэтому основной недостаток классического ленточника – это плохая работа на нижнем участке рабочих частот. Если лента вышла из зазора, то стали заметны искажения. Как раз тот самый «шорох и звон» ленты, о которых иногда пишут в отзывах владельцы «Фунтек»-ов.
Логично, использовать «пищалку» в том диапазоне, где она «даст фору» всем остальным видам излучателей. То есть, хотим максимальное качество звука- используем разделительный конденсатор (всего лишь 6 Дб/окт) и слушаем от 10 кГц и выше с наилучшей фазо-линейной характеристикой.
Если же хотим слушать от 5 кГц (и выше) –включаем через фильтр 3-го порядка (конденсатор-катушка-конденсатор, 18 Дб/окт).
Как компромиссный вариант: слушаем через конденсатор от 5 кГц, но сильно «не газуем». Тем более, что в данном конкретном случае чувствительности (и громкости соответственно) вполне с запасом даже для обычного лампового однотактника.
Напомню главное преимущество ленточника-вес «диффузора», на порядок меньше любой самой крутой купольной пищалки динамического типа. Отсюда –лучшая атака/затухание сигнала и более точная подача музыкальной информации для наших ушей.
Для тех, кто захочет повторить конструкцию «один-в один», надо знать, что сопротивление именно такого динамика переменному току (импеданс) составляет 4,75 Ом.
В этой статье не будет видео работающего высокочастотника, так как без поддержки излучателей средне- и низкочастотного диапазона, вы услышите только цыканье. Но, работу готовой трёхполосной АС, в которую входят эти излучатели, обязательно продемонстрирую после того, как расскажу про сборку остальных составляющих.
Вторую статью начну с рассказа, из чего и как сделать очень хороший среднечастотный излучатель звука. Главным критерием –абсолютная доступность каждому и очень малая стоимость затрат.
Источник
Тестер — прозвонка с питанием от USB своими руками
Какие колонки бывают
На сегодняшний день практически в каждом автомобиле присутствует магнитола с колонками, расположенными спереди и сзади и способными радовать владельца достойным звуком. На рынке предлагается разнообразие акустических систем, способных удовлетворить запросы даже самых требовательных ценителей музыки. Один из простых вариантов — приобрести магнитолу в комплекте с динамиками. Более сложный способ, правильно подобрать и установить акустику, которая будет соответствовать конкретному автомобилю.
Чтобы получить действительно качественный звук, нужно выяснить, какие типы динамических головок существуют. Условно их подразделяют на:
- широкополосные;
- коаксиальные;
- компонентные.
Широкополосные динамики воспроизводят весь спектр звуковых частот, который способен воспринять человеческий слух. Именно такой акустикой в большинстве случаев комплектуются сегодня автомобили с завода. Если же вы являетесь любителем хорошего звука, то предпочтение следует отдать коаксиальным динамическим головкам. Комплект состоит из нескольких колонок, монтаж которых осуществляется по одной оси. Весь спектр частот, разделённый на низкочастотный (НЧ), среднечастотный (СЧ) и высокочастотный (ВЧ), воспроизводится отдельными динамиками. Путём разделения и расширения диапазона частот, можно улучшить качество звука. Для любителей музыки высокого качества с мощными НЧ, следует рассмотреть компонентную систему, которая, как правило, используется в качестве фронтальных динамиков. Помимо разных типов акустических систем, динамики разделяют по типоразмерам, выбор которых зависит от места установки и от преследуемых целей.
Акустичекие системы разделяются на широкополосные, коаксиальные и компонентные. Отдавать предпочтение тем или иным динамикам нужно в зависимости от преследуемых целей
Для чего предназначены пищалки
В автомобильных акустических системах довольно часто используются пищалки или твитеры. Основное их назначение — воспроизводить звуки высокой частоты. Приобрести элементы можно как отдельно, так и в комплекте с многокомпонентной системой. По внешнему виду такие устройства представляют собой небольшие динамики, которые способны улучшить звук в автомобиле, сделав его ещё звонче и объёмнее. Устанавливают их, как правило, сзади или спереди, что зависит от используемой схемы акустической системы.
Пищалки в автомобиле предназначены для воспроизведения звуков высокой частоты, а устанавливают их в боковые стойки лобового стекла, двери, на торпедо
автоэлектрик
Всем известно что контролька(пробник) это самый, или почти самый главный инструмент автоэлектрика, она позволяет по быстрому проверить напряжение в важных частях проводки, «пробежаться по предохранителям». Да, для этого есть мультиметр, но попробуйте проверить пятьдесят предохранителей в блоке предохранителей мультиметром, это долго и муторно.
У меня есть несколько мультиметров, токовые клещи, осциллограф, сканеры-шманеры всякие и это всё используется каждый день, но контролька очень нужна при проведении первичной диагностики, проверки предохранителей. За более чем десять лет работы автоэлектриком я делал много контролек, это были варианты с резистором, светодиодом и шилом из тяги от китайских замков. Минус такой контрольки в том что невозможно определить какое напряжение мы измеряем, светодиод одинаково весело светится и от 12 вольт, и от 8, из-за этого можно зайти в тупик при поиске неисправности не увидев очевидную просадку напряжения. Я это проходил, как результат, поиск простой неисправности растянулся на несколько часов, после этого светодиодные контрольки ушли из моей работы.
Также были варианты в вилке прикуривателя с батарейкой и двумя светодиодами, показывающие и плюс и минус имеющие теже недостатки.
Вобщем в какой-то момент я решил что мне нужна хорошая «взрослая» контролька, с цифровым выводом информации, небольшим размером, с приличным дизайном, с возможностью зарядки от усб. Дисплей был выбран OLED 128*32, он имеет подходящие габариты и не требует подсветки. В качестве источника питания подошёл аккумулятор Robiton LP401225 ёмкостью 90мА. Управлять этим всем будет микроконтроллер Atmega328p. Также было решено запилить режим осциллографа. Корпус был смоделирован в программе Компас 3D и изготовлен на 3D принтере.
В итоге получилось вот что
Эту контрольку я использую уже около года, также несколько моих друзей пользуются такими. Получилось на мой взгляд круто. Не сказать что это было просто, но результат стоит того. Далее (по мере свободного времени обновляю статью) я вам расскажу как я делал такую контрольку и научу как сделать такою же. При наличии желания и свободного времени вы сможете собрать точно такую же.
Купить контрольку автоэлектрика можно в интернет магазине.
Сборка контрольки своими руками
Вот примеры использования этой крутой контрольки
После того как я определился с компонентами для сборки контрольки нужно было всё это скомпоновать для того чтобы определиться с размерами будущей печатной платы и корпуса. Для моделирования использовал Компас 3D версии 16 Home лицензионный. Вот что получилось.
Корпус тоже создаём в Компасе.
Вот такая сборочка получилась
Далее сохраняем смоделированный корпус в формате STL и открываем в программе CURA.
В этой программе настраиваем нужные параметры для печати на 3д принтере, сохраняем файл и запускаем печать.
Вот такой корпус получился
Впринципе можно его обработать, покрыть лаком и использовать, но напечатанный на принтере корпус недостаточно прочен, поэтому я изготовил из силикона формы для заливки пластика.
Дальше была разработана в sprint layout плата и изготовлена с помощью лута. К сожалению фотографий той платы не сохранилось. После отладки я заказал платы а промышленом качестве. Сборка контрольки своими руками.
После этого была написана программа для атмеги.
to be continue…
Какой-то ШИМ, уже даже не помню что это и на каком автомобиле)
Проверка мотора дворников на гранте, сигнал концевика редуктора, очень удобно.
Проверка блока управления вентиляторами на Митсубиси, шим сигнал управления.
Проверка кислородного датчика на Митсубиси паджеро
Обзор второй версии контрольки.
интернет магазин автоэлектрика
разборный мангал своими руками без сварки
парикмахерская в Барнауле на Сизова
контролька автоэлектрика, пробник автоэлектрика, миниатюрный осциллограф, осциллографический пробник, контролька на микроконтроллере авр, корпус своими руками на 3д принтере, моделирование корпуса электроники в компас 3д
Похожие страницы:
- Сборка контрольки автоэлектрика
- Изготовление оригинального разборного мангала из…
- Обзор контрольки автоэлектрика V2.0
- Диагностика ВИС 2349.
- Предохранитель прикуривателя Лансер Цедия
- 4 основные причины проблем с отопителем
Схема пищалки
Логин: Пароль: Запомнить меня Регистрация Забыли пароль? Страницы: Пред. Сообщений: Регистрация: Итог темы — нечего пользоваться дешевыми усилителями или устройствами у которых нет этих функций , или не забывайте при включении усилителя или смене режимов все ручки громкости поставить на минимум.
Павел К. Сейчас этот форум просматривают: Google [Bot] и гости: 9.
Подключения зуммера к Arduino
Подключение модуля пьезоэлемента к Ардуино выглядит достаточно простым. Потребляемый ток маленький, поэтому можно просто напрямую соединить с нужным пином.
Подключение пищалки к Ардуино (порт 12)
Электрическая схема подключения пьезоэлемента без сопровождающих модулей выглядит следующим образом.
Схема подключения зуммера
На некоторых вариантах корпусов зуммера можно найти отверстие для фиксации платы при помощи винта.
Зуммер arduino имеет два выхода. Следует обратить внимание на их полярность. Темный провод должен быть подключен к «земле», красный – к цифровому пину с PWM. Один вывод настраивается в программе как «вход». Arduino отслеживает колебания напряжения на выводе, на который подаётся напряжение с кнопки, резистора и датчиков.
Пищалка Арудино с названиями контактов
Напряжение на «вход» подается различное по значениям, система четко фиксирует только два состояния – вышеупомянутые 1 и 0 (логические ноль и единица). К логической единице будет относиться напряжение 2,3-5 В. Режим «выход» – это когда Arduino подает на вывод логический ноль/единицу. Если брать режим логического нуля, тут величина напряжения настолько мала, что ее не хватает для зажигания светодиода.
Схема подключения пищалки к Ардуино
Обратите внимание, что входы довольно чувствительны к внешним помехам разного рода, поэтому ножку пьезопищалки через резистор следует подключать к выводу. Это даст высокий уровень напряжения на ножке.
Пробник электрика своими руками
Не так давно у меня возникла необходимость залезть в проводку в машине. С задачей поиска массы или провода под напряжением у меня уже третий год трудился пробничек с двумя светодиодами подключенными в разные стороны Штука простая как две копейки и надежная как лом. Но в этот раз мне было надо немного больше. Мне была нужна функция прозвонки. И как назло мультиметр, которым я обычно это делал не так давно благополучно сгорел. Посидел, почесал репу и решил про апгрейдить свой старый пробник.
Как выбрать трансформатор
Первый элемент – это преобразователь напряжения. Трансформатор способствует преобразованию переменного напряжения 220 Вольт в такое же по амплитуде, только со значением, намного меньше. По крайней мере, вам нужно меньшее значение. Для мощных блоков питания за основу можно взять трансформатор типа ТС-270. У него высокая мощность, даже имеются 4 обмотки, которые выдают по 6,3 Вольт каждая. Они использовались для питания накала радиоламп. Без особого труда из него можно сделать блок питания 12 Вольт 12 Ампер, который сможет даже АКБ автомобиля заряжать.
Но если вас полностью не устраивают его обмотки, то можно вторичные все убрать, оставить только сетевую. И провести намотку провода. Проблема в том, как посчитать необходимое количество витков. Для этого можно воспользоваться простой схемой вычисления – посчитайте, сколько витков содержит вторичная обмотка, которая выдает 6,3 Вольт. Теперь просто разделите 6,3 на число витков. И вы получите величину напряжения, которое можно снять с одного витка провода. Осталось только высчитать, сколько нужно намотать витков, чтобы на выходе получить 12,5-13 Вольт. Будет даже лучше, если на выходе окажется на 1-2 Вольт напряжение выше требуемого.
Источник