- Недорогой комплект для сборки паяльной станции T12
- Hakko t12 паяльная станция своими руками
- Откуда такой ажиотаж вокруг Hakko T12?
- Выбираем набор для сборки
- Сравнение некоторых версий
- Цифровая паяльная станция своими руками
- Технические характеристики
- Шаг 1. Обычные и цифровые паяльники
- Обычные паяльники с регулятором температуры
- Шаг 2. Компоненты и материалы
- Шаг 3. Проектирование
- Шаг 4. Принципиальная схема
- Шаг 5. Печатная плата
- Шаг 6. Калибровка понижающего преобразователя.
- Шаг 7. Сборка системы
- Шаг 8. 3D-печать корпуса
- Шаг 11. Разъём Hakko 907.
- Шаг 12. Подключение внешних компонентов
- Шаг 13. Программирование
- Шаг 14. Отрегулируйте контрастность ЖК-дисплея и вставьте ручку потенциометра.
- Шаг 15. Закройте корпус и включите устройство
- Шаг 17. Станция готова к работе!
Недорогой комплект для сборки паяльной станции T12
Неоднократно меня спрашивали о каком нибудь недорогом и нормальном варианте простой паяльной станции. Конечно если хочется что-то более-менее нормальное, то стоит наверное говорить о станциях на базе жал Т12, как о более удобных, в отличие от довольно старой серии 900.
И сегодня у меня совсем небольшой обзорчик именно такого варианта.
При заказе предлагалось выбрать один из четырех вариантов комплектации, отличались они только количеством жал и их типов, я выбрал самый простой вариант, с одним жалом.
Также вроде можно было выбрать и цвет индикатора, но я как-то об этом не задумался и в итоге получил базовый комплект с синим индикатором.
Характеристики, которые были заявлены, по сути стандартны для подобных станций так как определяются в основном типом примененного жала.
1. Быстрое нагревание
2. Автоматический сон
3. Пробуждение при движении ручки
4. Получите более высокую температуру, нажав на кодировщик
5. Мощность: DC 24 V 3A
6. Мощность Maximum: 75 Вт
7. Температура: 200-450C
8. Время плавления олова: haakot12 c,jhrf , наконечник паяльника т12 где взять часть которую закручивают , распиновка фишки паяльника т12 , настройка quicko t12 951 , сборка т12 sensor , контроллер для паяльника т12 , схема набора паяльной станции на жалах hakko t12 , как собрать кит т12 , станция dxchmei т 12 d настройка , паяльник на т12 кит набор , параметры настройки паяльной станции t12 с led индикатором , зачем ложится в набор т 12 два датчика? , stc t12led схема подключения , ksger t12 схема подключения ручки , сборка stc t12 , t12 паяльная станция конструктор сборка , т 12 паяльник регулировка контроллера температуры stc , схема подключения конструктор паяльная станция на жалах hakko t12 diy kit , инструкция по сборке паяльной станции t12 led , hakko 951 t12 , ksger t12 kit сборка , cj,hfnm gfznmubr t12 , самодельная подставка для паяльника t12 , паяльник на hakko t12 , как настроить mini stc t12
Источник
Hakko t12 паяльная станция своими руками
В статье кратко описаны предпосылки выбора паяльной станции именно на жалах Hakko T12, далее приведён сравнительный анализ нескольких версий, доступных на рынке, а также рассмотрены некоторые особенности сборки паяльной станции и её финальной настройки.
Откуда такой ажиотаж вокруг Hakko T12?
Чтобы понять почему многие радиолюбители последнее время так заинтересовались этими китайскими станциям, нужно начать издалека. Если вы уже сами пришли к данному решению, эту главу можно пропустить.
У любого начинающего учиться паять, первым встаёт вопрос выбора паяльника. Многие начинают с доступных в ближайшем хоз.маге копеечных паяльников фиксированной мощности. Конечно, какие-то простейшие работы, типа пайки проводов можно выполнять даже советским паяльником с медным жалом, особенно при наличии навыка. Однако, любому, кто попробовал спаять таким паялом что-либо более технологичное, становятся очевидны проблемы: если паяльник слишком слабый (40Вт и менее) — некоторые детали, например выводы соединённые с земляным полигоном, очень неудобно выпаивать, а если мощный (50Вт и более) — он очень быстро перегревается и вместо пайки происходит ритуальное выжигание дорожек. Исходя из вышеизложенного, даже если вы только учитесь паять, желательно всё-таки купить паяльник с возможностью регулировки температуры. Однако, чаще всего паяльники с простыми регуляторами, встроенными в ручку, представляют собой изделия крайне низкого качества, поэтому, если уж вы задались вопросом выбора нормального паяльника, скорее всего уже стоит смотреть в сторону паяльных станций.
Чаще всего следующий вопрос — какую именно паяльную станцию выбрать. Тут могут быть вариации, поскольку профессионалы, в основном, работают с достаточно громоздкими станциями совмещёнными с паяльным феном, типа PACE, ERSA или, на худой конец Lukey. Мне дома фен ни к чему, но при этом хочется иметь надёжную, мощную и компактную станцию с возможностью регулировки. Так как рабочее место не резиновое, станция должна быть действительно небольшой, поэтому многие станции отпадают по габаритам. Плюс, естественно, всегда хочется уложиться в некий разумный бюджет. И тут на сцену выходят наши китайские друзья, со своими станциями, предназначенными для работы с жалами японской фирмы Hakko. Оригинальные паяльные станции от данного бренда стоят каких-то неадекватных денег, а вот китайские поделки под эти жала, как ни странно, обладают достаточно высоким качеством, при очень приятной цене.
Итак, почему жала именно от Hakko? Главный их козырь это керамический нагреватель, совмещеный с датчиком температуры. Собственно, для готовой паяльной станции к такому жалу остаётся лишь «добавить» ПИД-регулятор и достаточную мощность, что позволяет достичь быстрого нагрева и качественного поддержания заданной температуры. Ну и обернуть всё это в удобный корпус. Собственно, в паяльных станциях-конструктораx, которые можно в изобилии найти на Алиэкспрессе по запросам типа «diy hakko t12», всё это реализовано, а в комплекте китайцы обычно кладут одно-два жала Hakko (бытует мнение что это в основном копии, однако, даже у копий качество на уровне).
Выбираем набор для сборки
Если вы уже попробовали искать на Али подобный паяльник, вы наверняка удивились разнообразию вариантов, которые выдаёт поиск.
На начало 2018-ого года в поиске на Али чаще всего попадаются предложения от «фирм» Quicko, Suhan и Ksger. Причём в описаниях они иногда даже ссылаются друг на друга, поэтому вполне очевидно, что это суть одно и то же, так что далее я, по возможности, буду пропускать конкретные названия «производителя», ссылаясь только на версии конкретных станций, ибо беглый анализ фотографий позволяет предположить, что если версии совпадают, то и схемотехника примерно одинаковая.
На самом деле, вариаций в целом не так много, как может показаться на первый взгляд. Опишу основные значимые различия:
- Микронтроллер станции: это либо STC, либо STM. Чаще всего встречается мнение, что поделки на STM лучше, хотя у меня, например, вариант на STC и он меня вполне устраивает. Если судить по обзорам, доступным в сети, основная разница в станциях на этих МК это используемый экран — в контроллерах на STC чаще всего используется стандартный цифровой LED-индикатор, а версии на STM в основном идут с графическим OLED-дисплеем. Кроме того, версии на STM практически всегда имеют возможность сохранять настройки для нескольких жал, тогда как на STC эту возможность чаще всего не реализуют. Сравнения версий, основанных на контроллере STM здесь не будет.
- Индикатор: как уже было сказано выше это либо стандартный семисегментынй индикатор, либо графический OLED или ЖК-дисплей. На мой взгляд для такого устройства как паяльная станция никаких данных, кроме температуры, отображать не нужно. С графическим дисплеем удобнее будет настраивать, но и только. Учитывая, что настраивать вы её будете, скорее всего, один единственный раз, принципиальной разницы нет. Хотя в случае с семисегментным индикатором, скорее всего будет полезным где-то сохранить назначения пунктов меню, на случай если настройки по какой-то причине собьются.
- Корпус: чаще всего попадается примерно одной и той же конфигурации — прямоугольная алюминиевая коробка высотой около 4см, в которой все органы управления выведены с переднего торца, а кнопка включения и сетевой разъём с заднего. Предлагают пластиковый, либо алюминиевый (чуть дороже). Смысла брать пластик я не вижу никакого. Есть пара подводный камней, о них в главе «Сборка».
- Жало: по умолчанию, большинство продавцов кладут в комплект жало T12-K, вот такое:
В целом форма не самая удобная, но и не плохая. Я в любом случае планировал заказывать несколько дополнительных жал, поэтому не стал менять.
- При 12В — 1.5А (18 Вт)
- При 15В — 1.88А (28 Вт)
- При 18В — 2.25А (41 Вт)
- При 20В — 2.5А (50 Вт)
- При 24В (max!) — 3А (72 Вт)
Я категорически не советую использовать блоки с напряжением меньше 19В — такой паяльник получится слишком слабым.
Обратите внимание, для некоторых версий указано, что при использовании блока питания выше 19В желательно отпаять резистор 100 Ом, подписанный как-то типа «20-30V R-NC». Данный резистор запараллелен с более мощным резистором на 330 Ом и вместе они образуют один резистор 77 Ом, включенный перед микросхемой 78M05. Отпаяв 100 Ом, мы оставим один резистор на 330. Сделано это для того чтобы уменьшить падение напряжения на данном регуляторе при большом входном напряжении — очевидно для повышения его надёжности и долговечности. С другой стороны, подняв сопротивление до 330 мы также ограничим максимальный ток по линии +5В. При этом, учитывая, что сама 78M05 вполне может переварить даже 30В на входе, я бы не выпаивал 100 Ом полностью, а заменил бы данный резистор на что-то в диапазоне 200-500 Ом (чем выше напряжение, тем больше номинал). Либо можно вообще не трогать данный резистор и оставить как есть.
Итак, с общей комплектацией определились, теперь чуть более пристально рассмотрим сами платы различных версий.
Сравнение некоторых версий
Сейчас в продаже можно найти вагон различных станций под разными названиями, непонятно чем различающийся. Я уже писал выше, что купил себе станцию на STC, поэтому и сравнивать буду только версии на этом контроллере.
Источник
Цифровая паяльная станция своими руками
В этом посте мы будем делать в домашних условиях недорогую цифровую паяльную станцию Hakko 907! Она способна поддерживать переменную и постоянную температуру (до 525 °C). Для создания паяльной станции потребуются несколько компонентов общей стоимостью всего 7 долларов (не считая блока питания, но можно использовать уже имеющийся блок питания). Мне не удалось найти подробные инструкции по созданию такой станции, поэтому я решил подготовить собственный туториал с подробным описанием процесса.
Технические характеристики
Станция предназначена для ручных паяльников Hakko 907.
Станция совместима с ручными паяльниками аналогичного типа.
Температурный диапазон: от 27 до 525 °C.
Время прогрева: от 25 до 37 с (до 325 °C).
Рекомендованный источник питания: 24 В, 3 А.
Мощность: 50 Вт (средняя).
Схема сборки, разводка печатной платы, код и файлы стандартной библиотеки шаблонов доступны по ссылке.
Шаг 1. Обычные и цифровые паяльники
Как и любой самодельщик, я взял за основу обычный паяльник. Эти паяльники отлично проявляют себя в работе, однако у них есть ряд недостатков. Любому домашнему мастеру, кто хоть однажды паял, известно, что нагрев таких паяльников занимает от 7 до 15 минут и только после этого их можно использовать по назначению. После нагревания такие паяльники продолжают работать в максимальном температурном диапазоне. В некоторых случаях такие паяльники при длительном контакте с электронными компонентами могут их повредить. Я на своём опыте знаю, что, если неудачно дотронуться сильно разогретым наконечником паяльника до перфорированной макетной платы, можно повредить приклеенный на плату медный слой. Вообще говоря, таких ошибок можно избежать, и для этого существуют свои способы и приёмы, но, стоит только попробовать пайку с цифровой паяльной станцией, у вас никогда не возникнет желания вернуться к старым методам.
Обычные паяльники с регулятором температуры
Для регулирования температуры нагрева обычных паяльников существует простой и распространённый способ – подключить в цепь питания регулятор температуры, ограничивающий мощность, подаваемую на нагревательный элемент. Такие регуляторы устанавливаются на продукты довольно часто. В своё время у меня была паяльная станция Weller с таким регулятором. И это было на самом деле очень удобно! Единственным недостатком такого способа является отсутствие замкнутого контура температурной обратной связи. В некоторых случаях температура паяльника будет меньше установленной регулятором, так как по мере пайки поглощающих тепло компонентов температура наконечника будет снижаться. Чтобы компенсировать падение температуры, можно повернуть регулятор, но, стоит прекратить пайку, температура снова повысится. Время разогрева паяльника можно несколько уменьшить, если повернуть регулятор в крайнее (максимальное) положение, а после разогрева повернуть его обратно.
Цифровая паяльная станция
Я предпочитаю третий способ – самый любимый. Он довольно схож со способом использования паяльника с регулятором температуры, но при этом все действия выполняются автоматически с помощью PID-системы (системы с пропорционально-интегрально-дифференциальным регулятором). Говоря простым языком, такая автоматизированная электронная система управления паяльной станцией «поворачивает» ручку регулятора температуры за вас. Если система обнаружит, что температура наконечника паяльника опустится ниже установленного значения, система повысит мощность до значения, необходимого для выработки тепла на наконечнике паяльника. Если температура паяльника поднимется выше установленного значения, питание на паяльник перестанет подаваться, что приведёт к снижению температуры. С помощью такой системы ускоряется весь процесс пайки – система постоянно включает и отключает нагревательный элемент паяльника и, таким образом, поддерживает постоянную температуру на его наконечнике. Поэтому при использовании цифровых паяльных станций паяльник разогревается значительно быстрее.
Шаг 2. Компоненты и материалы
В зависимости от того, где вы собираетесь купить компоненты станции, итоговая цена системы может оказаться разной (советую закупить компоненты на Aliexpress, так выйдет дешевле всего). Я ещё попробую выяснить, в каких именно интернет-магазинах можно приобрести самые дешёвые компоненты, и, возможно, внесу в ссылки некоторые изменения. Свои компоненты я приобрёл в местном магазине E-Gizmo Mechatronics Manila.Требуемые материалы:
Паяльник Hakko 907 (аналог за 3 доллара).
Программируемый контроллер Arduino Nano.
Понижающий преобразователь (MP2303 производства D-SUN).
Гнездовой 5-штырьковый DIN-разъём.
Гнездо для подключения внешнего источника постоянного тока (2,1 мм).
Источник питания 24 В, 3 A.
ЖК-дисплей 16X2 I2C.
Операционный усилитель LM358.
МОП-транзистор IRLZ44N (я использовал IRLB4132, он лучше).
Электролитический конденсатор 470 мкФ, 25 В.
Сопротивление 470 Ом, 1/4 Вт.
Сопротивление 2,7 кОм, 1/4 Вт.
Сопротивление 3,3 кОм, 1/4 Вт.
Сопротивление 10 кОм 1/4 Вт.
Потенциометр 10 кОм.
ЗАМЕЧАНИЕ: на принципиальной схеме и печатной плате ошибочно указан транзистор IRFZ44N. Следует использовать транзистор IRLZ44N, это версия транзистора IRFZ44N логического уровня. В моей системе я использовал транзистор IRLB4132, так как его у нас легче купить. Можно использовать и другие МОП-транзисторы. Они будут нормально работать, если их технические характеристики соответствуют приведённым ниже. В старой версии паяльной станции я использовал транзистор IRLZ44N.
Рекомендованные технические характеристики МОП-транзисторов:
N-канальный МОП-транзистор логического уровня – МОП-транзисторы логического уровня можно непосредственно подключать к штыревому соединителю логической платы (цифровому штырьку Arduino). Поскольку напряжение насыщения затвора ниже обычных напряжений Vgs стандартных МОП-транзисторов, на МОП-транзисторе логического уровня предусмотрен затвор для подачи напряжений насыщения 5 или 3,3 В (Vgs). Некоторые производители не указывают это в технических характеристиках. Это отражено на кривой зависимости Vgs от Id.
Значение Vds должно быть не менее 30 В – это предельное значение напряжения МОП-транзистора. Мы работаем на 24 В, и, в принципе, значения напряжения Vgs 24 В должно хватить, но обычно, чтобы обеспечить стабильную работу, добавляется некоторый запас. Стандартное значение напряжения Vgs для большинства МОП-транзисторов составляет 30 В. Допускается использование МОП-транзисторов с более высокими напряжениями Vgs, но только в том случае, если другие технические характеристики не выходят за пределы диапазона.
Сопротивление Rds(on) 0,022 Ом (22 мОм): чем ниже, тем лучше. Rds(on) – это сопротивление, формируемое на контактах стока и истока МОП-транзистора в состоянии насыщения. Проще говоря, чем ниже значения сопротивления Rds(on), тем холоднее будет МОП-транзистор. При увеличении значения Rds(on) МОП-транзистор будет при работе нагреваться благодаря рассеиванию мощности из-за – хоть и небольшой, но всё-таки присутствующей – резистивности МОП-транзистора, даже если он находится в состоянии проводимости.
Id не менее 3 А (я предлагаю более 20 А) – это максимальный ток, который может выдержать МОП-транзистор.
Шаг 3. Проектирование
Внутри паяльника Hakko 907 находится нагревательный элемент, рядом с которым размещается датчик температуры. Оба этих элемента имеют керамическое покрытие. Нагревательный элемент представляет собой обычную спираль, генерирующую тепло при подаче питания. Датчик температуры фактически представляет собой терморезистор. Терморезистор ведёт себя аналогично резистору – при изменении температуры сопротивление терморезистора меняется.
Таинственный терморезистор Hakko
К сожалению, Hakko не приводит практически никаких данных о терморезисторе, установленном внутри нагревательных элементов. Для меня это много лет оставалось загадкой. Ещё в 2017 году я провёл небольшое лабораторное исследование, пытаясь узнать тепловые характеристики таинственного терморезистора. Я прикрепил датчик температуры к наконечнику паяльника, подключил омметр к штырькам терморезистора и подал питание на нагревательный элемент с испытательного стенда. Увеличивая температуру паяльника, я фиксировал соответствующие сопротивления терморезистора. В итоге у меня получился график, который оказался полезным при разработке электрической схемы. Потом я выяснил, что, возможно, этот терморезистор представляет собой терморезистор с положительным температурным коэффициентом сопротивления. Другими словами, по мере повышения температуры вблизи терморезистора сопротивление терморезистора также увеличивается.(При выполнении следующих шагов рекомендую сверяться с третьим рисунком.)
Делитель напряжения для датчика
Используется для получения полезного выхода с датчика температуры терморезистора. Мне пришлось подсоединить его с помощью делителя напряжения. Здесь повторяется та же история – технические характеристики этого таинственного датчика отсутствуют, поэтому я установил верхний резистор на делитель напряжения, чтобы ограничить максимальную мощность, рассеиваемую на датчике (я установил максимальное значение 50 мВт). Теперь, когда на делителе напряжения появился верхний резистор, я вычислил максимальное выходное напряжение при максимальной рабочей температуре. Напряжение на выходе делителя напряжения составило приблизительно 1,6 В. Затем я попытался решить проблему совместимости АЦП для 10-разрядного программируемого контроллера Arduino Nano и в итоге обнаружил, что не могу подключить датчик делителя напряжения напрямую, так как значения получаются слишком малыми, и они могут оказаться недостаточными для получения нужного результата. Проще говоря, если я подключу датчик делителя напряжения непосредственно к аналоговому штырьку, то между значениями температуры могут возникать пропуски (например, 325 °C, 326 °C, 328 °C. пропущено значение 327 °C).
Операционный усилитель
Чтобы избавиться от возможной проблемы, связанной с пропуском температурных значений, я использовал операционный усилитель, усиливающий низкое пиковое значение выходного напряжения делителя напряжения (1,6 В). Расчёты, представленные на третьем рисунке, устанавливают требуемое минимальное значение коэффициента усиления и значение коэффициента усиления, выбранное мной для рабочей системы. Я не стал доводить коэффициент усиления до значения, при котором 1,6 В на выходе делителя напряжения превращались бы в 5 В опорного напряжения АЦП в Arduino, так как мне хотелось обеспечить определённый запас, если другие паяльники Hakko, подключаемые к делителю напряжения, будут выдавать напряжения выше 1,6 В (что может привести к нелинейным искажениям). Достаточно большой запас обеспечивается при использовании коэффициента усиления 2,22, при этом система сможет работать с другими моделями паяльников.
Шаг 4. Принципиальная схема
В качестве коммутационного устройства для регулирования напряжения методом широтно-импульсной модуляции в проекте используется простой N-канальный МОП-транзистор логического уровня. Он выступает в качестве цифрового переключателя, подающего питание на нагревательный элемент. Нереверсивный операционный усилитель (LM358) используется для усиления очень малых напряжений, выдаваемых терморезистором делителя напряжения. В качестве регулятора температуры используется потенциометр 10 кОм, а светодиодный индикатор представляет собой обычный индикатор, который я подключил и запрограммировал таким образом, чтобы он отображал состояние активности нагревательного элемента. В данном проекте я использовал ЖК-дисплей 16X2 с драйвером интерфейсной шины I2C, так как новичкам в электронике в нём проще разобраться.
Шаг 5. Печатная плата
Разводку печатной платы я осуществил в программе Proteus. Плата разведена как односторонняя намеренно, чтобы ни у кого не возникали трудности в процессе сборки системы в домашних условиях. Обратите внимание, что, если все элементы устанавливаются на одной стороне печатной платы, потребуется одна перемычка. PDF-файлы можно скачать с диска Google по ссылке ниже.Файлы в формате Gerber, если потребуется, можно скачать с диска Google по ссылке ниже. Дизайн моей платы вы также можете получить непосредственно на сайте pcbway, и тогда вам не придётся вручную вводить файлы Gerber.
Шаг 6. Калибровка понижающего преобразователя.
Поскольку большинство клонов программируемого контроллера Arduino Nano способны принимать входное напряжение не более 15 В (более высокое напряжение может вывести из строя пятивольтовый регулятор AMS1117), а нагревательному элементу для оптимальной работы требуется напряжение 24 В, для совместной работы обоих этих компонентов я ввёл в схему понижающий преобразователь. Регулятор AMS1117 5 В, присутствующий в большинстве клонов программируемого контроллера Arduino Nano, имеет падение напряжения 1,5 В, другими словами, входное напряжение на VIN-контакте Arduino Nano должно составлять 6,5 В (5 В + 1,5 В).
Шаги:
Установите напряжение на источнике питания 24 В.
Подключите источник питания ко входу понижающего преобразователя.
С помощью мультиметра отслеживайте напряжение на выходе понижающего преобразователя.
Отрегулируйте подстроечный резистор до значения напряжения на выходе 6,5 В.
Для обеспечения более высокой стабильности можно установить значение 7 В.
Шаг 7. Сборка системы
Для сборки системы воспользуйтесь принципиальной схемой или схемой размещения компонентов (см. предыдущие этапы).
Шаг 8. 3D-печать корпуса
Какой корпус выбрать – дешёвый пластиковый или мой, разработанный для 3D-печати, – решайте сами. Прилагаю для редактирования соответствующий файл Solidworks. Если потребуется осуществить печать заранее, можно воспользоваться файлами STL, которые можно скачать по приведённой ниже ссылке на Google-диск.
Мои настройки 3D-принтера:
Печать осуществляется на принтере Creality CR-10.
Высота уровня 0,3 мм.
Файлы для 3D печати (Solidworks и STL): Шаг 9. Финишная отделка корпуса (покраска и шлифовка).
После завершения печати полученный 3D-корпус корпус можно отшлифовать. Свой корпус, чтобы он выглядел более изящно, я выкрасил в чёрный цвет.Шаг 10. Установка внешних компонентов.
Закрепите на свои места в корпусе ЖК-дисплей, потенциометр 10 кОм, гнездо для подключения внешнего источника постоянного тока и плату. С помощью суперклея прикрепите DIN-разъём и ЖК-дисплей к корпусу.
Шаг 11. Разъём Hakko 907.
У вас, как и у меня, может возникнуть проблема с 5-штырьковым DIN-разъёмом для паяльника Hakko. Штырьковый разъём можно вырезать из паяльника и заменить его на 4-штырьковый разъём (возможно, у вас такой имеется). У меня нашлась пара 5-штырьковых DIN-разъёмов, однако не та, которая используется на Hakko. Третий штырёк – это обычный контакт заземления, его можно игнорировать, если не хочется возиться со схемой заземления и защитой от статического электричества.
Шаг 12. Подключение внешних компонентов
Такое подключение можно выполнить согласно принципиальной схеме (см. предыдущие шаги). Для дополнительной защиты я рекомендую добавить предохранитель в цепь от гнезда для подключения внешнего источника постоянного тока до платы. Я предохранитель не ставил, так как в моём блоке питания предохранитель уже имеется.
Шаг 13. Программирование
ШАГИ:
Подключите программируемый контроллер Arduino к компьютеру.
Загрузите шаблон моей программы.
Внесите в шаблон необходимые изменения.
Для паяльников Hakko 907 я использовал стандартные значения.
После калибровки эти значения, возможно, придётся изменить.
Не забудьте установить библиотеки Wire.h и LiquidCrystal_I2C.h.
Tools > Boards > Arduino Nano.
Tools > Port > выбрать порт, к которому подключён контроллер Arduino.
Как работает код
Если система обнаружит, что температура наконечника паяльника опустится ниже установленного значения, система повысит мощность до значения, необходимого для выработки тепла на наконечнике паяльника. Если температура паяльника поднимется выше установленного значения, питание на паяльник перестанет подаваться, что приведёт к снижению температуры. С помощью такой системы ускоряется весь процесс пайки – система постоянно включает и отключает нагревательный элемент паяльника и, таким образом, поддерживает постоянную температуру на его наконечнике. Поэтому при использовании цифровых паяльных станций паяльник разогревается значительно быстрее.
Контроль PID
В коде не используется техника PID. В первой версии я использовал старый PID-код, и он работает практически так же, как компараторная версия кода (в этом руководстве). Я остановился на более простой версии, так как с ней легче работать (настраивать, модифицировать и пр.). Я могу отправить по электронной почте версию PID, но она мало что изменит. Код Arduino (V1.0)
Шаг 14. Отрегулируйте контрастность ЖК-дисплея и вставьте ручку потенциометра.
Если контроллер Arduino и 16×2 ЖК-дисплей ранее вами не использовались, первым делом нужно настроить подстроечный резистор контрастности ЖК-дисплея. После завершения настройки вставляется пластиковая ручка потенциометра контроля температуры.
Шаг 15. Закройте корпус и включите устройство
Теперь можно закрепить заднюю панель корпуса. Но перед этим необходимо проверить правильность калибровки паяльной станции. В качестве источника питания можно использовать аккумуляторные батареи или любой источник питания с выпрямителем из моего списка рекомендаций по источникам питания. Для получения максимальной производительности паяльной станции рекомендую использовать блок питания 24 В, 3 А. Таким блоком питания паяльной станции может быть импульсный источник питания в металлическом корпусе или, как вариант, зарядное устройство для ноутбука. Если вы не хотите покупать новый источник питания, можно приобрести б/у. Зарядные устройства для ноутбуков, как правило, имеют номинал 18 В, 2,5 A. Они работают нормально, но время разогрева паяльника может достигать 37 с.Шаг 16. Бонус: как повысить теплопередачу.
Совет: для обеспечения лучшей теплопередачи я обычно наношу на наконечник паяльника Hakko 907 термопасту. Этот приём хорошо работает и значительно улучшает теплообмен! В течение первых 30 минут работы нужно не забывать обдувать наконечник воздухом, так как паста может вскипеть и начать выделять испарения. Через 30 минут паста превратится в мелоообразное вещество. Со временем, когда нужно заменить наконечник, помните, что высушенная паста прилипнет к наконечнику и нагревательному элементу. Удалить мелоообразное вещество можно с помощью резинового молотка.
Шаг 17. Станция готова к работе!
Я пользуюсь такой станцией уже почти 5 лет, и в этой статье рассказал о том, как изготовить её доработанную версию. Я внес небольшие усовершенствования в конструкцию, чтобы каждый, кого это заинтересовало, мог сделать то же самое. Интересно, получится ли у вас собрать такую станцию Hakko?
Узнайте, как прокачаться в других специальностях или освоить их с нуля:
Источник