Имитатор датчика температуры своими руками

Содержание
  1. Делаем датчик температуры своими руками
  2. Принцип работы
  3. Изготовление простого термодатчика
  4. Сборка
  5. Проверка
  6. Настройка
  7. Термодатчик на германиевых диодах
  8. Применение термодатчика на Ардуино
  9. Заключение
  10. Видео по теме
  11. Имитация сигналов от датчиков с токовым выходом и датчиков термосопротивления
  12. Датчик температуры своими руками: схемы, варианты постройки простых и точных датчиков температуры (90 фото)
  13. Принцип работы
  14. Как сделать датчик температуры своими руками. Как сделать терморегуляторы своими руками
  15. Терморегулятор своими руками: схема
  16. Общее понятие о температурных регуляторах
  17. Какие детали понадобятся: терморегулятор своими руками
  18. Контроль в помещениях
  19. Сборка
  20. Датчик для температуры воздуха
  21. Проверка
  22. Термодатчик на германиевых диодах
  23. Сообщества › Кулибин Club › Блог › Электрика: Датчики температуры, делаем сами.
  24. Применение термодатчика на Ардуино
  25. Использование термодатчика

Делаем датчик температуры своими руками

Термодатчик, собранный своими руками, может принести несомненную пользу, как в домашнем, так и приусадебном хозяйстве. Контроллер температуры окружающей среды вовремя включит или наоборот выключит вентилятор, обогреватель, кипятильник, тёплые полы и много других приборов в доме, обогреет или проветрит теплицы. При наличии минимального опыта работы с инструментами сделать датчик температуры своими руками не составит особого труда.

Принцип работы

Идея создания термодатчика состоит в том, что в его качестве используется электропроводной элемент, который под воздействием колебаний температуры окружающей среды меняет своё сопротивление. Таким элементом является терморезистор.

Принцип работы переменного сопротивления заключается в том, что при нагреве сопротивление понижается и ток, протекающий через него, меняет свою характеристику. Этот процесс находит своё отражение в работе прикладной схемы, которая включает или выключает соответствующие приборы.

Изготовление простого термодатчика

Перед тем, как сделать датчик температуры, нужно подготовить следующее:

  • блок питания 12 В;
  • вентилятор (кулер от компьютера 12 В);
  • терморезистор VDR1 (10 кОм);
  • переменный резистор (10 кОм);
  • полевой транзистор IRFZ 44;
  • макетная плата;
  • провода;
  • паяльник с припоем.

Сборка

Подготовив вышеперечисленные материалы и инструмент, переходят к пайке простенькой схемы.

  1. Плюсовую клемму блока питания соединяют проводом с входным контактом (+) кулера;
  2. Три вывода полевого транзистора спаивают проводами так: «исток» с кулером, «затвор» с терморезистором, «сток» с переменным резистором.
  3. Проводами соединяют свободные контакты терморезистора с «+» блока питания, переменного резистора с «−» того же блока.

Проверка

Тестируют терморегулятор в таком порядке:

  • к терморезистору подносят горящую спичку или зажигалку при этом должен заработать кулер;
  • при остывании вентилятор должен выключиться;
  • если схема не срабатывает, нужно перепроверить пайку и контакты.

TR — терморезистор, К — кулер, R1 — переменный резистор, ПТ — полевой транзистор, АБ — аккумуляторная батарея 12 В.

Настройка

В данном случае используется терморезистор, сопротивление которого равно 10 кОм при температуре воздуха 20 °С. При его нагреве сопротивление падает. Нужно подстроить переменный резистор на включение кулера в момент нагрева датчика. Методом подбора нескольких положений поворотного регулятора переменного сопротивления добиваются нужного эффекта.

Термодатчик на германиевых диодах

Особенностью германиевых полупроводниковых диодов является их высокая чувствительность к изменениям температуры воздуха. Поэтому эти радиодетали могут использоваться, как термодатчики при их обратном включении.

Их применение объясняется сильной зависимостью обратного тока от температуры окружающей среды. Эта особенность диодов используется в простой схеме регулятора скорости кулера.

Германиевые диоды, соединённые параллельно (3–4 шт.), включают в обратном направлении в цепь базы составного транзистора. Их стеклянные корпуса можно крепить прямо на кулер без всяких прокладок-теплоотводов. Резистор R1 предохраняет транзистор от теплового пробоя, а R2 определяет порог срабатывания регулятора. Если при превышении комнатной температуры вентилятор не включается, то число диодов надо увеличить. Когда кулер начинает вращать лопасти с большой скоростью количество радиодеталей уменьшают.

Применение термодатчика на Ардуино

Для сборки измерителя температуры в основе которого микроконтроллер Arduino нужно подготовить следующее:

  • Ардуино UNO;
  • коннекторы;
  • монтажная плата;
  • цифровой модуль DS18B20 (диапазон от −56 до +1250 С).

Цифровой температурный датчик DS18B20 — это устройство, которое не только сигнализирует о превышении заданного температурного порога, но и может запоминать значения измерений. Микросхема датчика имеет три выходных контакта — это «+», «−» и сигнальный провод. Термодатчик в водонепроницаемом исполнении используется для измерения нагрева воды или жидкостей.

Термодатчик всегда можно приобрести, как и плату Arduino, в интернет-магазинах. Цифровой модуль подсоединяют к Ардуино через каналы GND, а выход Vdd подключается к 5V, Data к любому Pin. Для более понятного восприятия схема подключения цифрового датчика DS18B20 к Ардуино представлена на нижеследующем фото.

Заключение

В зависимости от цели использования измерителя температуры окружающего пространства для самостоятельного его изготовления можно выбрать наиболее приемлемый и выгодный по затратам вариант. Для охлаждения энергозатратных плат достаточно использовать простую схему с кулером. А вот для работы с вентиляционным и обогревательным оборудованием уже понадобится более сложная система с использованием микроконтороллера Ардуино и термодатчиков заводского изготовления.

Видео по теме

Источник

Имитация сигналов от датчиков с токовым выходом и датчиков термосопротивления

При обслуживании оборудования КИП систем автоматики часто возникает необходимость имитировать выходной сигнал датчика с токовым выходом, датчика термосопротивления или датчика с выходным сигналом напряжения. Такая необходимость возникает, например, при пуско-наладочных работах, при выходе из строя датчика и отсутствии резерва, проверке срабатывания схем сигнализации и т.п. Разберем способы имитации наличия сигналов от датчиков с токовыми выходами 0-5, 0-20 или 4-20 мА (с пассивным или активным выходом), датчиков с выходным сигналом напряжения 0-1, 0-5 или 0-10В и датчиков термосопротивления (с двух-, трех- и четырехпроводной схемой подключения).

Имитировать выходной сигнал датчиков с токовым выходом проще всего с помощью специальных калибраторов токовой петли — они позволяют установить любое значение тока с высокой точностью. Если калибратора токовой петли под рукой нет, то задать нужный ток можно либо с помощью переменного резистора (для имитации датчика с пассивным токовым выходом), либо с помощью батареи и переменного резистора (для имитации датчика с активным токовым выходом).

Читайте также:  Блок полиспаст для лебедки своими руками

С помощью переменного резистора проще всего имитировать выходной сигнал датчика 4-20 мА. При этом номинал переменного резистора (значение его максимального сопротивления) подбирается исходя из величины напряжения питания (+U пит) на входных клеммах вторичного прибора и минимальной величины тока, которую мы планируем имитировать. Например, при напряжении +U пит равном 24В (величину этого напряжения можно узнать в руководстве по эксплуатации вашего вторичного прибора) и минимальном имитируемом токе 4 мА, нужен резистор сопротивлением не ниже 24В/4мА=6 кОм. Обычно резисторы с номиналом ровно 6 кОм не выпускаются, поэтому берем резисторы на 6,2 кОм из стандартного ряда номиналов или несколько больше. Не будет большой проблемой если вы возьмете резистор и на 10, 22, 51 и т.д. кОм, но в этом случае тяжелее будет установить требуемый ток, так как даже небольшой поворот оси резистора будет приводить к значительному изменению сопротивления и, следовательно, выходного тока.

Необходимо учитывать, что с помощью переменного резистора не очень удобно имитировать датчики с выходом 0-5 и 0-20 мА (но в принципе можно). Особенно значения выходного тока, близкие к 0, в том случае, когда требуется высокая точность задания тока. В этом случае все же лучше применять калибраторы токовой петли.

При использовании резистора в качестве задатчика тока необходимо помнить о том, что при одном из его крайних положений, когда сопротивление резистора равно нулю, ток в измерительной цепи может существенно превышать допустимые 5 или 20 мА. И в некоторых случаях это может привести к выходу из строя или входного канала вторичного прибора (если в нем нет ограничения величины входного сигнала) или другого оборудования, находящегося перед входом вторичного прибора (например, барьеры искро- или взрывозащиты). Для исключения эффекта перегрузки входа рекомендуется последовательно с переменным резистором подключить постоянный резистор. Номинал этого резистора зависит от напряжения +U пит вторичного прибора и величины максимального тока, например, 24 мА. По закону Ома номинал такого резистора будет равен 24В/24мА=1 кОм.

Для имитации токового сигнала датчика с активным выходом кроме переменного резистора потребуется еще и внешний источник питания (батарейка, аккумулятор, блок питания). Величина напряжения данного источника питания не должна быть меньше чем указано в руководстве по эксплуатации на вторичный прибор (возможно ограничение максимальной величины входного тока) и уж тем более величина напряжения источника питания не должна быть больше чем указано в инструкции — иначе можно выжечь вход вторичного прибора.

Полярность включения внешнего источника питания также зависит от схемотехники входного канала вторичного прибора. Поэтому перед подключением прочтите инструкцию на вторичный прибор. Для ограничения максимального тока в цепи также рекомендуется использовать ограничительный постоянный резистор, включенный последовательно с переменным.

Для имитации выходного сигнала датчика с выходным сигналом напряжения 0-1, 0-5 или 0-10В также понадобиться переменный резистор и источник питания (батарейка или АКБ). Но в данном случае резистор подключается параллельно батарейке и выполняет не функцию шунта, а функцию делителя напряжения. Номинал резистора может быть любым, но желательно достаточно большим, чтобы, во-первых, уменьшить величину потребляемого от источника питания тока и, во-вторых, не шунтировать высокое входное сопротивление вторичного прибора. Рекомендуемый номинал переменного резистора от 10 кОм до 200 кОм и более.

Напряжение источника питания (батарейки, АКБ) по возможности должно быть чуть больше чем максимальное значение имитируемого сигнала. При имитации сигнала 0-1В в качестве источника питания рекомендуется использовать одну пальчиковую батарейку или аккумулятор формата АА напряжением 1,5 или 1,2В соответственно. Для сигнала 0-5В — четыре пальчиковых батарейки по 1,5В или аккумулятор на 6В, для сигнала 0-10В — один аккумулятор на 12В.

В качестве задатчика напряжения также можно использовать лабораторный блок питания постоянного тока с регулируемым выходным напряжением в пределах 0-10В.

Имитация подключения датчика термосопротивления для измерения температуры осуществляется с помощью одного переменного резистора. В зависимости от схемы подключения (двух-, трех-, или четырехпроводная) схема подключения будет несколько отличаться. Для имитации работы основных градуировок датчиков термосопротивления 100П, 50П, Pt100, Pt50, Cu100, Cu50, 50М, 100М в диапазоне температур от минус 50 до плюс 300 градусов будет достаточно номинала резистора 220 Ом.

Конкретную схему подключения переменного резистора к входным клеммам вторичного прибора уточняйте в инструкции по эксплуатации вторичного прибора, учитывая, что перемычки, изображенные на рисунке расположенном выше, выполняют роль компенсационной жилы.

В качестве переменных резисторов во всех приведенных выше схемах лучше применять многооборотистые переменные или подстроечные резисторы — в этом случае выставить нужное значение тока или сопротивления будет намного проще. Но как уже говорилось ранее для имитации сигналов от датчиков луччше использовать специальные калибраторы токовой петли, стоимость которых начинается от 6000 руб (Овен РЗУ-420).

Источник

Датчик температуры своими руками: схемы, варианты постройки простых и точных датчиков температуры (90 фото)

Пример простого терморегулятора

Далее мы рассмотрим принцип действия и варианты изготовления такой самоделки.

Принцип работы

Идея создания термодатчика состоит в том, что в его качестве используется электропроводной элемент, который под воздействием колебаний температуры окружающей среды меняет своё сопротивление. Таким элементом является терморезистор.

Принцип работы переменного сопротивления заключается в том, что при нагреве сопротивление понижается и ток, протекающий через него, меняет свою характеристику. Этот процесс находит своё отражение в работе прикладной схемы, которая включает или выключает соответствующие приборы.

Как сделать датчик температуры своими руками. Как сделать терморегуляторы своими руками

Среди многочисленного ассортимента полезных приборов, которые приносят в нашу жизнь комфорт, есть большое количество тех, которые можно сделать своими руками.

К этому числу можно отнеси и терморегулятор, который включает или отключает нагревательные и холодильные оборудования в соответствии с определенной температурой, на которую он установлен.

Такое устройство отлично подойдет на период холодной погоды, например для подвала, где нужно хранить овощи. Так как же сделать терморегулятор своими руками, и какие детали для этого понадобятся?

Читайте также:  Брошь букет своими руками пошагово

Терморегулятор своими руками: схема

Про конструкцию термостата можно сказать, что она не особа сложна, именно по этой причине большинство радиолюбителей начинают свое обучение именно с этого прибора, а так же именно на нем оттачивают свои навыки и мастерство. Схем прибора можно найти очень большое количество, но самой распространенной является схема с применением, так называемого компаратора.

Данный элемент имеет несколько входов и выходов:

  • Один вход отвечает подачу эталонного напряжения, которое отвечает необходимой температуре;
  • Второй получает напряжения от датчика температуры.

Сам компаратор принимает все поступающие показания и сравнивает их. В случае если будет генерировать сигнал на выходе, то он включит реле, которое подаст ток на обогревательный или холодильный аппарат.

Чем лучше герметизировать дымоход?

Общее понятие о температурных регуляторах

Приборы, фиксирующие и одновременно регулирующие заданное температурное значение, в большей степени встречаются на производстве. Но и в быту они также нашли своё место.

Для поддержания необходимого микроклимата в доме часто используются терморегуляторы для воды. Своими руками делают такие аппараты для сушки овощей или отопления инкубатора.

Где угодно может найти своё место подобная система.

В данном видео узнаем что из себя представляет регулятор температуры:

В действительности большинство терморегуляторов являются лишь частью общей схемы, которая состоит из таких составляющих:

  1. Датчик температуры, выполняющий замер и фиксацию, а также передачу к регулятору полученной информации. Происходит это за счёт преобразования тепловой энергии в электрические сигналы, распознаваемые прибором. В роли датчика может выступать термометр сопротивления или термопара, которые в своей конструкции имеют металл, реагирующий на изменение температуры и под её воздействием меняющий своё сопротивление.
  2. Аналитический блок – это и есть сам регулятор. Он принимает электронные сигналы и реагирует в зависимости от своих функций, после чего передаёт сигнал на исполнительное устройство.
  3. Исполнительный механизм – некое механическое или электронное устройство, которое при получении сигнала с блока ведёт себя определённым образом. К примеру, при достижении заданной температуры клапан перекроет подачу теплоносителя. И напротив, как только показания станут ниже заданных, аналитический блок даст команду на открытие клапана.

Это три основные части системы поддержания заданных температурных параметров. Хотя, помимо них, в схеме могут участвовать и другие части наподобие промежуточного реле. Но они исполняют лишь дополнительную функцию.

Какие детали понадобятся: терморегулятор своими руками

Для датчика температуры чаще всего используют терморезистор, это элемент который регулирует электрическое сопротивление в зависимости от температурного показателя.

Так же часто применяют полупроводниковые детали:

На их характеристики температура должна оказывать такое же влияние. То есть при нагреве должен увеличиваться ток транзистора и при этом он должен престать работать, не смотря на входящий сигнал. Нужно учесть, что такие детали обладаю большим недостатком. Слишком сложно провести калибровку, говоря точнее, будет трудно привязать эти детали к некоторым датчикам температуры.

Однако на данный момент промышленность не стоит на месте, и вы можете увидеть приборы из серии 300, это LM335, которым все чаще рекомендуют воспользоваться специалисты и LM358n.

Не смотря на очень низкую стоимость, данная деталь занимает первую позицию в маркировках и ориентируется на сочетание с бытовой техникой. Стоит упомянуть, что модификации этой детали LM 235и 135 успешно применяются в военных сферах и промышленности.

Включая в свою конструкцию около 16 транзисторов, датчик способен работать в качестве стабилизатора, а его напряжение будет полностью зависеть от температурного показателя.

Зависимость заключается в следующем:

  1. На каждый градус будет приходиться около 0, 01 В, если ориентироваться на Цельсий, то на показатель 273 результат на выходе составит 2, 73В.
  2. Диапазон работы ограничивается в показателе от -40 до +100 градусов. Благодаря таким показателям, пользователь полностью избавляется от регулирований методом проб и ошибок, а требуемая температура будет в любом случае обеспечена.

Так же кроме датчика температур вам потребуется компаратор, лучше всего приобрести LM 311, который выпускает тот же производитель, потенциометр для того чтобы сформировать эталонное напряжение и выходную установку чтобы включать реле. Не забудьте приобрести блок питания и специальные индикаторы.

Контроль в помещениях

Возможен вариант контроля терморегулятора в нескольких помещениях.

Типовая схема терморегулятора для погреба.

Приборы обозначаются латинскими буквами и цифрами. Например, LM135. Чтобы не ошибиться в выборе, запомните: 1 — применение в военной технике, 2 — применение в производственных аппаратах и устройствах, 3 — применение в бытовых приборах.

Российским аналогом является обозначение транзисторов — 2Т (военный) и КТ (массовый). Принцип действия такого датчика таков: при повышении температуры увеличивается напряжение стабилизации, то есть это стабилитрон. Удостовериться в правильности выбора можно, почитав технические характеристики прибора.



Сборка

Подготовив вышеперечисленные материалы и инструмент, переходят к пайке простенькой схемы.

  1. Плюсовую клемму блока питания соединяют проводом с входным контактом (+) кулера;
  2. Три вывода полевого транзистора спаивают проводами так: «исток» с кулером, «затвор» с терморезистором, «сток» с переменным резистором.
  3. Проводами соединяют свободные контакты терморезистора с «+» блока питания, переменного резистора с «−» того же блока.



Датчик для температуры воздуха

Данное устройство предназначено для измерения теплового режима внутри закрытого пространства.

Как сделать датчик температуры воздуха твоими руками? Для сооружения данной микросхемы необходимо иметь четкое представление готового результата.

Для работы понадобятся следующие детали и инструменты:

  • Датчик марки lm 335. Он имеет некоторые сходство с транзистором, у которого 3 металлические ножки;
  • Подстроечный резистор R2-10Kom. Его используют для правильной калибровки, которая обеспечит точность в работе датчика;
  • Микросхема. Схема датчика температуры своими руками поможет правильно соединить все детали между собой. На плате металлической разметкой расположены места соединения для каждого типа детали;
  • Пинцет;
  • Паяльник;
  • Защитные очки для глаз.

На выходе резистор обеспечивает 1,5 вольт. При выборе проводов необходимо обратить свое внимание на музыкальные виды шнуров. Они имеют заземление.

Проверка

Тестируют терморегулятор в таком порядке:

  • к терморезистору подносят горящую спичку или зажигалку при этом должен заработать кулер;
  • при остывании вентилятор должен выключиться;
  • если схема не срабатывает, нужно перепроверить пайку и контакты.
Читайте также:  Ботокс крем своими руками

TR — терморезистор, К — кулер, R1 — переменный резистор, ПТ — полевой транзистор, АБ — аккумуляторная батарея 12 В.



Термодатчик на германиевых диодах

Особенностью германиевых полупроводниковых диодов является их высокая чувствительность к изменениям температуры воздуха. Поэтому эти радиодетали могут использоваться, как термодатчики при их обратном включении.

Их применение объясняется сильной зависимостью обратного тока от температуры окружающей среды. Эта особенность диодов используется в простой схеме регулятора скорости кулера.

Германиевые диоды, соединённые параллельно (3–4 шт.), включают в обратном направлении в цепь базы составного транзистора. Их стеклянные корпуса можно крепить прямо на кулер без всяких прокладок-теплоотводов. Резистор R1 предохраняет транзистор от теплового пробоя, а R2 определяет порог срабатывания регулятора. Если при превышении комнатной температуры вентилятор не включается, то число диодов надо увеличить. Когда кулер начинает вращать лопасти с большой скоростью количество радиодеталей уменьшают.

Сообщества › Кулибин Club › Блог › Электрика: Датчики температуры, делаем сами.

Иногда возникает нужда в температурном контроле за каким нибудь процессом, будь то автомобиль или народное хозяйство. Схем термоконтроля всяких много, но датчики как правило имеют неудобный конструктив, не предусматривающий крепления в контролируемой среде. Вот о датчиках и поговорим.

Как правило, датчиками для измерительных схем служат полупроводниковые приборы — термисторы:

Корпус может быть другим, но внутри все равно будет сидеть примерно такая капелька с выводами.

Вторым распространенным датчиком температуры является DS1820:

зачастую они продаются в таком виде:

Внутри все та же микросхемка DS18B20 о трех выводах причем даже без термопасты.

Теперь давайте попробуем внедрить эти радиодетали в автомобиль, например для цифровой индикации температуры ОЖ или управления электровентиляторами.

Нам понадобится донорский датчик — любой подходящий по резьбе и стоимости. В моем случае это Волго-УАЗовский датчик ТМ 106-10

Берем дрель в качестве токарного станка и аккуратно зажимаем датчик в патрон. Ножовкой по металлу спиливаем завальцовку. Когда датчик развалится на составные части так же в дрели ровняем край датчика надфилем. Получаем корпус-заготовку для внедрения туда нашей радиодетали.

Далее можно пойти двумя путями:1. Залить в корпус расплавленного припоя, в этом припое просверлить канал и вставить туда термистор. Можно заполнить полость корпуса термопастой и воткнуть термистор в неё, но у олова теплопроводность на несколько порядков лучше чем у термопасты, поэтому термопасту конечно же надо применять, но мазать ее лучше тонким слоем.

Минус этого метода в большой инерционности полученного датчика.

2. Сделать так, как делаю это я Берем телескопическую антенну от какого нибудь старого ненужного девайса:

Если вы их раньше выкидывали, то делали это зря, потому что такие антеннки являются источником замечательных тонкостенных латунных трубочек разного диаметра:

Подбираем трубочку наиболее подходящую к термистору — он должен максимально плотно вставляться внутрь трубки. Отмеряем и опять воспользовавшись дрелью, отрезаем нужный нам кусочек трубки — резать лучше надфилем. Берем наш корпус-заготовку и сверлим его торец по диаметру трубки. Торец корпуса лудим оловом, трубку зачищаем до латуни и тоже облуживаем. Вставляем трубку в корпус и припаеваем их друг к другу, паяльника на 80Вт хватает за глаза. Должно получиться как то так (торец уже запаян небольшим кусочком медной фольги толщиной 1мм):

Проверяем полученный корпус датчика на герметичность. Я делаю это не очень технологично — на присос языком

Советуем изучить Индукционная паяльная станция

Если с герметичностью все в порядке приступаем к следующей стадии: установке термистора и разъема.

Опять все примеряем и отрезаем выводы термистора с тем расчетом, чтобы при установке в корпус термистор находился в конце трубки, а лучше упирался в торец:

Теперь термистор готов к установке. Закладываем немного термопасты вовнутрь трубки, сам термистор тоже немного обмазываем термопастой и вставляем в трубку. После того как термистор вошел в трубку под разъем закладываем немного приготовленного заранее поксипола или эпоксидного пластилина. Вдавливаем разъем в поксипол, излишки убираем. Когда поксипол окончательно застынет получается вот такой симпатичный датчик готовый к установке:

А вот так датчик будет стоять на своем рабочем месте — измерительная часть будет полностью омываться рабочей средой:

Ну и картинка общей проверки работоспособности электрической части:

Применение термодатчика на Ардуино

Для сборки измерителя температуры в основе которого микроконтроллер Arduino нужно подготовить следующее:

  • Ардуино UNO;
  • коннекторы;
  • монтажная плата;
  • цифровой модуль DS18B20 (диапазон от −56 до +1250 С).

Цифровой температурный датчик DS18B20 — это устройство, которое не только сигнализирует о превышении заданного температурного порога, но и может запоминать значения измерений. Микросхема датчика имеет три выходных контакта — это «+», «−» и сигнальный провод. Термодатчик в водонепроницаемом исполнении используется для измерения нагрева воды или жидкостей.

Термодатчик всегда можно приобрести, как и плату Arduino, в интернет-магазинах. Цифровой модуль подсоединяют к Ардуино через каналы GND, а выход Vdd подключается к 5V, Data к любому Pin. Для более понятного восприятия схема подключения цифрового датчика DS18B20 к Ардуино представлена на нижеследующем фото.

Использование термодатчика

Основной функцией датчика является своевременное обнаружение отклонений от температурного режима. При наступлении критического перегрева, термодатчик подает световой сигнал. Действие прибора основано на сравнении нормального напряжения с повышенным напряжением, возникающим при увеличении температуры.

Устройство оборудовано инвертирующим входом, соединенным через анод с кремниевым диодом, непосредственно выполняющим функцию термодатчика. Кроме того, здесь имеется неинвертирующий вход, подключенный к переменному резистору. Он предназначен для установки температурного порога, когда происходит срабатывание сигнализатора.

В случае изменения температуры в сторону увеличения, происходит падение напряжения на диоде. В этом случае, значение температурного коэффициента сопротивления будет отрицательным. Физические свойства датчика позволяют обнаруживать даже незначительные колебания температуры.

Источник

Оцените статью