Главная > Модели > Скоростная электро-импеллерная авиамодель
Скоростная электро-импеллерная авиамодель для экстремальных полётов и пилотажа
Часть вторая
Как разрезать две доски чтобы получился самолёт я уже подробно изложил . На этот раз всё немного сложнее: возьмите пять досок бальзы и кусок пенопласта, аккуратно склейте вместе, после чего наждачной шкуркой придайте форму самолёта. В каждой шутке есть доля шутки, в подтверждение чему последующее описание процесса постройки модели.
Профиль крыла GOE795 двояковыпуклый несимметричный, в меру остроносый был выбран благодаря малому коэффициенту сопротивления Сх и его относительно ровному поведению в диапазоне углов атаки от -1 до +4 градусов, что видно по полярам данного профиля, немного мною модифицированного (нижний обвод от 1/5 части хорды до конца вырожден в прямую линию и относительная толщина доведена до 8%):
Расчёты на Motokalk дали следующие вполне неплохие результаты:
Изготовить крыло решено было как бальзово-пенопластовый сэндвич армированный углеволокном. Наполнитель из обычного упаковочного пенопласта от мебели изготовлен очень простым, хотя и весьма экстравагантным методом по одному шаблону. Шаблоном является корневая нервюра крыла, приклеенная к торцу пенопластового бруса. Все последующие действия понятны из рисунка:
Вот что получилось:
Остатки пенопласта не выбрасываем, они послужат формой пресса для последующей оклейки шпоном:
Приклеиваем и подгоняем законцовку:
Переднюю кромку проклеиваем углеволокном, бальзовой рейкой и скругляем:
Склеиваем консоли вместе, делаем вырез под наплывы, которые будут принадлежать фюзеляжу, вырезаем элероны. Крыло готово:
Как делать фюзеляж я не имел ни малейшего представления, но стоило взять в руки нож и бальзу, всё срослось само собой. Силовой основой послужит Т-образная балка, иначе говоря тавр, на котором будет крепиться крыло, кабина пилота с аккумуляторами и верхний отсек с электроникой. Куда крепить импеллеры — на крыло или на фюзеляж станет ясно по ходу дела. Склеиваем вместе две доски и обтачиваем по форме фюзеляжа самолёта:
Нижнюю часть укрепляем углепластиковой рейкой для прочности:
С верхней частью придётся немного поколдовать. Она должна точно прилегать к нижней и плотно прижимать крыло. Конструкция выполнена наборной, шпангоуты из самой мягкой бальзы 4мм вырезаны грубо, после вклейки доведены до нужной формы:
Хвостовая часть усилена по месту установки стабилизаторов:
Для соединения верхней и нижней частей фюзеляжа предусмотрены специально приобретённые в розничной торговой сети «грибки»:
После оклейки всей конструкции бальзовым шпоном 1 мм прикладываем шаблон профиля крыла и делаем вырез под крыло:
Теперь можно всё собрать вместе и с замиранием сердца посмотреть что получилось:
Остаётся зашить нижнюю часть фюзеляжа бальзой толщиной 2мм, изготовить наплывы:
и придать носовой части обтекаемую форму также довольно экстравагантным образом. Разводим эпоксидную смолу с пенопластовыми шариками.. и далее понятно по картинкам:
Не считая мелких доводок и общей ошкурки полученных изделий, фюзеляж и крыло готовы к обтяжке плёнкой «Touhlon» моего фирменного красно-серебристого цвета:
На крайних фото модель уже снабжена импеллерами и фонарём кабины аккумуляторов. Форма для фонаря склеена из толстых пластин-отходов бальзы:
Теперь на всё это хозяйство в сборе надевается бутылка и в духовку! 5 секунд — фонарь готов.
С импеллерами оказалось всё немного сложнее чем я думал..
На тот момент в розничной торговой сети Москвы был доступен только один импеллер Vasa Fan 55G и ни одного мотора Mini AC 1215/12. Пришлось искать другие варианты, и вспомнил я как когда-то давно на заре увлечения RC-моделизмом пришёл я в легендарный «Термик» и увидел там великолепные импеллеры Граупнер из карбона идеальных форм и высочайшего качества, как впрочем и вся продукция Граупнер:
Подумал я тогда — вот вырасту большим, стану крутым моделистом — обязательно куплю их и построю классный импеллерный самолёт! Время пришло, и два последних импеллера Graupner 1380 терпеливо дожидались меня на полках «Термика». К моей модели они идеально подходили по размерам, правда немного вываливались по весу, и рассчитаны на работу как раз с моим Mini AC 1215/12. Диаметр рабочего сечения канала уже 60 мм, выходной диаметр 55мм. Посмотрим что думает по этому поводу господин Мотокалк:
Ну.. как-то ничего хорошего он по этому поводу не думает. Особенно шокируют потери мощности 44 ватта в случае с батареями 2S LiPo и 122 ватта с батареями 3S LiPo! Это больше чем 60% потерь. В общем, инранеры от Model Motors экономичностью никогда не славились. Может быть в вертолётах или с редукторами, но никак ни в импеллерах. Тем временем вырисовывается другой весьма привлекательный вариант:
Ну конечно же Мега! Более чем пол-кило тяги при токе всего 26 ампер от двух полимерок! Да и скорость потока на выходе позволит построить действительно скоростной самолёт. Два месяца терпеливого ожидания и два чудо-двигателя Mega ACn 16/7/4 успешно преодолели границы некогда братских государств (отдельная благодарность магазину Е-Fly) и добрались до моего просторного балкона-моделки.
В чём собственно говоря чудо? Ну не говоря об идеальном качестве исполнения, кевларовой обмотке ротора, эти моторчики живут на мощностях до 250 ватт, а особо смелые товарищи типа меня, безболезненно разгоняют их до 350, и это при весе 48 гр! Сопротивление обмотки всего 16,5 мОм. В общем, все выгоды моторов Mega вполне очевидны.
Установка двигателей Mega ACn 16/7/4 в импеллеры Graupner 1380 с регуляторами хода Dualsky XC25A и аккумуляторами Pilotage 2100 11.1В два в параллель дала следующие результаты:
Максимально допустимый ток для одного двигателя и регулятора 25А достигается при положении ручки газа примерно 3/4, при этом модель удерживает свой вес, то есть тяга равна примерно по 525 гр на импеллер.
При максимальном газе ток достигает 35 ампер на каждый импеллер. Модель поднимает свой вес и ощущается значительное дополнительное усилие на подъём, то есть тяга значительно больше чем 525 гр на один импеллер. После 10 секунд работы в таком режиме регулятор начинает сбрасывать обороты — срабатывает защита от перегрева.
Здесь надо учитывать, что это были статические испытания, обдува регуляторов хода никакого. Условия их работы в полёте будут разумеется иные, ток будет меньше, и 5-секундного «форсажа» вполне хватит на какой-нибудь экстремальный манёвр.
В общем самолётик получается горячий, а меня не покидает чувство тревоги, что я построил нечто, что превосходит мой собственный уровень подготовки, и ничего подобного класса качества, сложности и характеристик я никогда ранее не строил. Машина, ревущая двумя импеллерами, и поднимающая своими плотными струями воздуха всё в квартире вверх дном, рвётся в небо!
Источник
Как сделать импеллер, если есть только мотор и вентилятор.
Когда мне в руки попали импеллеры с 10 лопастями, традиционные 5 и 6 лопастные выглядели в моих глазах уже не так красочно. Я занимаюсь строительством и летательством моделей авиалайнеров на реактивной тяге, поэтому, наряду с хорошим внешним видом самолета, хотелось бы иметь соответствующий вид у вентиляторов импеллеров, тк эти детали очень хорошо заметно.
Для начала я задался целью сделать полукопийный импеллер для модели самолета Боинг-737. Это совсем не просто, тк в выходном канале импеллера размещается имитация конуса турбины, что вызовет определенные потери тяги. Чтобы не переделывать по многу раз, я создал картонный макет.
Прежде, чем я расскажу, что и как, обозначим масштабы действия. Диаметр вентилятора 70мм, 10 лопастей. На фото показан полный комплект импеллера, использоваться будет лишь переходник на вал 3,17мм и сам вентилятор. Мотор 29-55 2400КВ, взятый от импеллера RC Lаnder на 6S.
В оригинале, у Ландера было 5 лопастей. Установка данного вентилятора в корпус Ландера вызвала незамедлительный рвотный рефлекс у мотора, сопровождавшийся срывом синхронизации и запахом горелой изоляции. Все это происходило при питании от 4 банок. Тяга при этом была просто смешной. Ток не мерял, тк было ясно, что мотор просто не справляется с нагрузкой. Смена тайминга ничего нового не принесла. Когда-то установленный средний тайминг оказался самым наилучшим. Регулятор TURNIGY PLUSH 60.
Тогда я решил, что создам другой статор, чтобы данный вентилятор в наибольшей степени раскрыл свои плюсы и не душил с таким остервенением двигатель. Т.к. это по сути эксперимент, решено было сделать корпус из картона с пропиткой клеем. Структура спрямляющего аппарата подсмотрена на настоящем двигателе
Как видно на фото, сначала идет ряд мелких неподвижных лопаток, а затем более крупных опорных.
Для начала я решил проверить как будет сидеть на валу двигателя вентилятор. Мне наверное повезло, вентилятор вращался ровно, без каких-либо биений и вибраций. Это значит, что скорее всего процедура балансировки не понадобится.
После установки вентилятора, корпус двигателя снаружи был плотно обмотан полосой бумаги для принтера, смоченной в клее ПВА. Получилось 3 слоя бумаги, поверх которых была намотана полоса стеклоткани 48гр/м в 2 слоя. Все это дело сушилось 2 дня, после чего я приступил к ответственной операции — надо было определить угол установки лопаток спрямляющего аппарата. Построив на глаз скоростной векторный треугольник (а где мне взять точные значения?), начертил направление установки лопатки, под расчетным углом. Пробная подстановка 1 лопатки показала близкое расчетное значение к оптимальному. В связи с тем, что угол установки лопаток вентилятора у корня почти 90 градусов, поток в этой части будет выходить с большей круткой, нежели у краев вентилятора. Это значит, что статорные лопатки должны иметь геометрическую крутку. Учитывая, что данной конструкции придется работать при небольших числах Рейнольдса, профиль спрямляющих лопаток выбран в виде изогнутой пластины по радиусу 40мм. Хорда лопатки 10мм.
Метод практической проверки расчетов заключается в помещении лопатки в поток за вращающимся вентилятором. При этом вполне достаточно раскрутить вентилятор до 50% от максимальных оборотов. Лопатку не должно отбрасывать назад, ее должно слегка клонить по направлению вращения вентилятора. В идеале нужно найти мертвую зону, где лопатку не клонит ни туда, ни сюда и прибавить к этому значению 3 градуса. Это будет угол атаки лопатки для нормальной работы спрямляющего аппарата. Для чистоты эксперимента, лопатку лучше изготовить как единое целое с ручкой подачи. При этом можно подобрати и крутку лопатки для наибольшей эффективности устройства.
Проделав теоретическую часть и лабораторную работу, наклеиваем заранее заготовленные лопатки на двигатель
Закончив со спрямляющим аппаратом, изготавливаем и устанавливаем опорные лопатки. Их угол 0 градусов к оси симметрии. Они сделаны из бальзы, обернутые в 1 слой бумагой для принтера на суперклее. В связи с их работой при небольших числах Рейнольдса, но бОльших, чем у спрямляющих, профиль этих лопаток был выбран «плоская пластина». Все лопатки я клеил на суперклей для увеличения скорости изготовления.
В моем случае получилось 13 спрямляющих и 6 опорных. Почему? Как советует литература по авиадвигателям, расстояние между лопатками должно быть примерно равно хорде лопатки. Итого получилось 13 лопаток. А 6 опорных сделал по соображениям прочности оболочки вентилятора. Слишком большое их количество уменьшает эффективность импеллера всвязи с большой скоростью потока,который их обтекает. В общем тут чистый компромисс между потерями и прочностью.
Закончив с лопатками, свертываем из тонкого картона в 2 слоя наружный корпус и приклеиваем его к неподвижным частям импеллера.
После чего берем пластиковое кольцо от другого импеллера и вклеиваем в переднюю часть, где находится вентилятор
Получается что-то похожее , но для завершения картины надо сделать имитацию конуса турбины и губу копийной формы.
Сначала делаем «луковицу» — обтекатель двигателя, выводим провода, монтируем стойки для конуса. Делается эта штука тоже из бумаги, сам конус из синего пенопласта с последующей оклейкой бумагой и соединением деталей воедино. Использовался клей Титан.
Затем можно сделать губу. Она выточена из синего пенопласта, оклеена стеклотканью 48гр/м в 1 слой на клее ПВА, а затем для гладкости поверхности покрыта слоем клея Титан.
Когда клей высохнет, губа устанавливается на свое место.
Конус турбины делается из тонкого картона в 2 слоя, затем устанавливается на свое место и наружный корпус дополняется сужающимся конусным каналом.
В результате проделанной работы мы имеем импеллер, отдаленно похожий на двигатель CFM-56, который устанавливается на самолетах Боинг-737.
Пробные раскрутки до полных оборотов показали, что двигателю хватает мощности крутить этот вентилятор, при этом вибраций и прочих явлений дисбаланса не наблюдалось.
Мощность и тяга:
Испытания проводились в полном комплекте, как на последних фото. Есть мысль, что если убрать конус, тяга увеличится, но это я позже проверю.
При работе на 6 банках из сопла вылетает очень тугая выхлопная струя горячего воздуха. Этот феномен я объяснить ничем не могу. Никаких сбоев, никакого запаха горелой изоляции, никаких свистов и воя не было. Был ровный мощный звук шума воздуха. Как существенный минус, следует отметить нелинейный прирост тяги от оборотов и потребляемой мощности. Видимо сказывается небольшая ширина лопаток вентилятора. Импеллер отработал 10 циклов по 4 минуты каждый и бодро себя чувствует. По сути, по данному образцу можно смело строить стеклопластиковый импеллер.