Импульсный блок питания своими руками 2153

Поделки своими руками для автолюбителей

Простой, импульсный блок питания на IR2153

Сегодня поговорим и рассмотрим распространённую схему импульсного источника питания построенную на микросхеме IR2153.

Итак, мы имеем схему импульсного источника питания, которая запитывается от 220 вольт и скажем на выходе у неё появляется некоторое напряжение для запитки чего-либо, то есть, какой-то усилитель, либо какая-то другая конструкция.

По входу у нас 220 переменки, идёт на фильтр L1 с плёночными С1 и С2 конденсаторами, но этот дроссель можно убрать из схемы и просто заменить перемычками, всё прекрасно будет работать и без него.

Дальше напряжение поступает на полноценный двухполупериодный диодный мост, я использовал не готовую диодную сборку, а обычные диоды 1N4007, 4 диода собрал из них диодный мост, на диодном мосту напряжение выпрямляется, но выпрямляется не до конца, потому что там, всё равно остается какая-то полуволна, этот синус поступает на сглаживающий конденсатор, в данном случае здесь 100 микрофарад 400 вольт.

Сглаживающий конденсатор, если когда поступает на него напряжение мультиметром сделать замер, напряжение будет чуть больше, чем скажем 220 вольт, может быть 250-280 вольт. С чем это связано? — это конденсатор заряжается до своего амплитудного значения, дальше после сглаживающего конденсатора напряжение поступает на схему.

Минус диодного моста у нас получается общий, то есть для запитки всей схемы силовой части и для микросхемы это IR2153, то есть для генератора.

Питание микросхемы осуществляется — плюс на первый вывод, минус на четвертый вывод. Микросхема запитывается через цепочку, R1, VD3, сглаживающий конденсатор С4, который сглаживает помехи от резистора и всей этой цепочки, чтобы микросхема нормально работала.

При подключении и сборки всей схемы необходимым мультиметром проверить выводы на микросхеме 1 + и 4 нога минус напряжение должно быть в районе 15 вольт, тогда микросхема будет нормально работать и генерировать импульсы.

Дальше у нас между 8 и 6 ногой микросхемы стоит пленочный конденсатор (С6) на 220 нанофарад, вообще емкость этого конденсатора подбирается исходя из частоты генератора, то есть в данном случае частота генератора в районе 47- 48 килогерц, конденсатор может быть и 0,2 микрофарад и 0,47 и 0,68 даже один микрофарад, то есть, тут этот конденсатор особо не критичен.

Данная микросхема работает на частоте 47-48 килогерц, цепочка которая обеспечивает данную частоту это резистор R2 — 15К и пленочный или керамический конденсатор (С5) один нанофарад или можно поставить 820 пикофарад.

5 вывод и 7 вывод микросхемы генерируют прямоугольные, управляющие импульсы, которые через резисторы R4 и R3 поступают на затворы мощных, полевых транзисторов, то есть эти резисторы нужны, чтобы не спалить случайно транзисторы.

Например импульс поступает на затвор мощного полевого транзистора, далее через балластный конденсатор (С7) на 220 нанофарад 400 вольт на первичную обмотку трансформатора Т1.

Что касаемо трансформатора, трансформатор был взят с компьютерного блока питания.

Его нужно немного доработать, то есть выпаять, разобрать, опустить в кипяток, чтобы расплавить клей, которым склеен феррит или нагреть паяльный феном, одеваем какие-то перчатки, чтобы не обжечь руки и потихонечку располовиниваем и сматываем все обмотки этого трансформатора.

Из расчета того, что мне на выходе нужно было получить в районе 25 вольт, первичная обмотка проводом 0,6 миллиметров в две жилы наматывается целиком 38 витков. Каждый слой изолировал скотчем, то есть слой обмотки, слой изоляции, потом сверху вниз опять все мотаем в одну сторону, изолируем всё и мотаем вторичную обмотку.

Вторичная обмотка — 7 жил, тем же проводам 0,6 миллиметров и мотаем в ту же сторону — это очень важно, те кто начинает разбираться в импульсных источниках питания, всё мотаем в одну и ту же сторону.

Всего 7 или 8 витков вторичной обмотки и потом всё это дело обратно склеиваем и собираем весь феррит на место.

Транзисторы установлена на небольшой теплоотвод, этого вполне достаточно при нагрузке где-то в районе 100 ватт. Два транзистора закреплены через теплопроводящие прокладки и термопасту.

Сейчас мы всё это включим в сеть, возьмём мультиметр и померяем напряжение на выходе.

Но есть еще такой момент, перед запуском блока питания всё делаем последовательно, то есть берём лампочку на 100 ватт 220 вольт и через лампочку подключаем наш блок питания, если лампочка не загорелась или там слегка вспыхнула спираль, значит конденсатор зарядился и как бы всё нормально, можно аккуратно проверять на выходе наше напряжение.

Читайте также:  Изготовление парящей чашки своими руками

Если допустим лампочка горит, то уже в схеме есть какие-то косяки, либо где-то не пропаяно, либо где-то сопли на плате или какой-то компонент неисправен. Так что, перед сборкой берите исправные детали.

Включаем мультиметр в режим измерения постоянного напряжения 200 вольт и измеряем на выходе наше напряжение у меня выдаёт 29 вольт

Хотелось бы сказать, что это моя первая конструкция, то есть я собирал также, как и начинающий радиолюбитель, которые побаиваются собирать свои первые и импульсные источники питания, и больше прибегают к сетевым трансформатором.

Источник

Импульсный блок питания своими руками 2153

СБОРКА И НАЛАДКА ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ НА IR2153 IR2155

Практическую часть статьи рассмотрим на примере схемы №2 первой части сатьи и чтобы не перепрыгивать туда-сюда расположим здесь принципиальную схему данного блока питания:

Принципиальная схема импульсного блока питания на микросхеме IR2153 (IR2155)

Начинать сборку все равно с чего — либо с монтажа элементов на плату, либо с изготовления моточных деталей. Мы начнем с монтажа, поэтому лучше изучить чертеж расположения деталей повнимательней, к тому же некоторые элементы отличаются от предложенных на принципиальной схеме.
Например номиналы резисторов R16 и R18 отличаются чуть ли не в полтора раза. В данном случае номиналя этих резисторов не принципиальны и могут располоагаться в пределах от 33 кОм до 100 кОм, поскольку служать прежде всего для разрядки конденсатора С4 при снятии напряжения питания. Второстепенную роль, которую они выполняют, это формировании виртуального нуля, т.е. создания половины первичного напряжения, что немного предпочтительней простого соеднинения С13 и С14 с шинами питания.
Резисторы R14 и R17 — формируют небольшую задержку немного увеличивая время реакции системы защиты. Номиналы этих резисторов могут располагаться от 33 Ом до 180 Ом.

С13 и С14 — предназначены для развязки по постоянному напряжению обмотки трансформатора, на схеме 1 мкФ, на плате 2,2 мкФ. При частоте преобразования 60 кГц реактивное сопротивление конденсатора на 1 мкФ будет составлять Хс = 1 / 2пFC = 5,3 Ома, учитывая то, что по «схемному» вариант по переменному напряжению получается паралельное соединение, т.е. получается 2 мкФ, то реактивное сопротивление составит 2,7 Ома. При протекании через это сопротивление тока в 2 А на конднесаторе будет условное «падение» напряжения всего в 2,7 Ома х 2 А = 5,4 В, что составляет 1,8 %. Другими словами выходное напряжение блока питания будет изменяться менее чем на 2 % под нагрузкой и без нее за счет реактивного сопротивление конденсаторов. При использовании конденсаторов на 2,2 мкФ в качестве С13 и С14 реактивное сопротивление составляет 1,2 Ома и под нагрузкой оно изменится на 0,8 %. Учитывая то, что напряжениесети может колебаться до 7% и это считается нормой изменения в 0,8 — 2 % врядли кто заметит, поэтому можно использовать конденсаторы от 1 мкФ до 4,7 мкФ, правда в эту плату габариты емкостей на 4,7 мкФ уже не будут слишком велики.
Сопротивление R20 может колебаться в гораздо бОльших пределах, поскольку его номинал зависит от потребляемого вентилятором принудительного охлажедения и полученным в конечном итоге выходного напряжения.
Сомнения в итоговом напряжении не напрасны, поскольку силовой трансформатор высокочастотный и имеет небольшое количество витков, а мотать дробные части витка довольно проблематично. Для примера рассмотрим случай, когда первичная обмотка составляет 17 витков. Прилагаемое к ней напряжение равно 155 В (после выпрямителя на VD1 получается 310 В, следовательно половина напряжение питания и есть 155 В). Воспользуемся пропорцией U перв / Q перв = U втор / Q втор , где U перв — напряжение на первичной обмотке, Q перв — количество витков первичной обмотки, U втор — напряжение вторичной обмотки, Q втор — количество витков вторичной обмотки и выясним, какие вторичные напряжения мы можем получить:
155 / 17 = ? / 5, где » ? » — выходное напряжение. Если во вторичной обмотке у нас будет 5 витков, то выходное напряжение будет составлять 45 В, если вторичка будет 4 витка, то выходное напряжение трансформатора составит 36 В.
Как видите получить напряжение ровно 40 вольт уже проблематично — нужно мотать 4,4 витка, а реальность показывает, что использовать обмотки не кратные половине витка довольно рискованно — можно намагнитить трансформатор и потерять силовые транзисторы.
В конечном итоге после монтажа компонентов печатная плата блока питания приобретет следующий вид:

На плате пока нет диодных мостов, силовых транзисторов, радиатров и моточных деталей, о которых сейчас и поговорим. При изготовлении импульсных блоков питания не стоит забывать о скин эффекте, который проявляется при протекании через проводник высокочастотного сигнала. Смысл этого эффекта заключается в том, что чем выше частота переменного напряжениея, тем меньше протекает ток через середину проводника, т.е. ток как будто стремится выйти на поверхность. Отсюда и название SKIN -кожа, шкура. По этому для высокочастотных трансформаторов необходимое от протекающего тока сечение получают методом сложения в жгут нескольких проводников меньшего диаметра, тем самым существенно снижая скин эффект и увеличивая КПД преобразователя.
Самым популярным способом сложения проводников является витой жгут. Определившись с длиной провода, необходимого для обмотки (одинарным проводм мотают необходимое количество витков и добавляют к полученной длине еще 15-20%) необходмое количество проводов растягиваю на эту длину а затем при помощи дрели и воротка свивают в один жгут:

Изготовление ленточного жгута более трудоемко — провода растягивают в непосредственной близости другу к другу и склеивают полиуритановым клеем, типа «МОМЕНТ КРИСТАЛЛ». В результате получается гибкая лента, намоитка которой позоволяет добится наибольшей плотности намотки:

Перед намоткой ферритовое кольцо следует подготовить. Прежде всего необходимо закруглить углы, поскольку они с легкостью повреждают лак на обмоточном проводе:

Затем необходимо кольцо изолировать, поскольку феррит имеет достаточно низкое сопротивление и в случае повреждения лака на обмоточном проводе может произойти межвиитковое замыкание. В середине, на азднем плане кольцо обмотано обычной бумагой для принтера, справа — бумага пропитана эпоксидным клеем, в середине спереди — наиболее предпочтительный материал — фторопластовая пленка:

Так же кольца можно обматывать матерчатой изолентой, но она довольно толстая и существенно сокращает размер окна, а это не очень хорошо.
Используя в качестве сердечника ферритовое кольцо обмотку необходимо равномерно распределить по всему сердечнику, что довольно существенно увеличивает магнитную связь обмоток и уменьшает создаваемые импульсным трансформатором электро-магнитные помехи:

Источник

Простой, самодельный импульсный блок питания на IR2153 своими руками

  1. Схема, необходимые компоненты
  2. Сборка своими руками
  3. Тестирование импульсного блока питания
  4. Видео о создании импульсного блока питания

Недавно мы говорили о создании лабораторного блока питания своими руками. Сегодня мы рассмотрим пошагово, как создать универсальный импульсный блок питания на микросхеме IR2153. В интернете полно схем БП на IR2153, но каждая из них имеет свои недостатки, а вот представленная схема — универсальная.

Схема импульсного блока питания на IR2153, необходимые компоненты

Первое, что бросается в глаза, это использование двух высоковольтных конденсаторов вместо одного на 400В. Таким образом можно сразу убить двух зайцев. Эти конденсаторы можно достать из старых блоков питания от компьютера, не тратя на них деньги.

Если блока нет, то цены на пару таких конденсаторов ниже, чем на один высоковольтный. Емкость конденсаторов одинаковая и должна быть из расчета 1 мкФ на 1 Вт выходной мощности. Это означает, что для 300 Вт выходной мощности вам потребуется пара конденсаторов по 330 мкФ каждый.

Важно также учитывать следующее соответствие:

  • 150 Вт = 2х120 мкФ
  • 300 Вт = 2х330 мкФ
  • 500 Вт = 2х470 мкФ

Также, если использовать такую топологию, отпадает потребность во втором конденсаторе развязки, что сэкономит место. Кроме того, напряжение конденсатора развязки уже должно быть не 600 В, а всего лишь 250 В. Сейчас вы можете видеть размеры конденсаторов на 250В и на 600В.

Следующая особенность схемы — запитка для IR2153. Все, кто строил блоки на ней, сталкивались с сильным нагревом питающих резисторов.

Даже если их ставить от переменки, выделяется очень много тепла. Чтобы этого избежать, вместо резистора используем конденсатор. Это предотвратит нагрев элемента по питанию.

Также плата оснащена защитой, но в первоначальном варианте схемы ее не было.

После тестов на макете выяснилось, что для установки трансформатора слишком мало места и поэтому схему пришлось увеличить на 1 см, это дало лишнее пространство, на которое нужно установить защиту. Если она не нужна, можно просто поставить перемычки вместо шунта и не устанавливать компоненты, отмеченные красным цветом.

Ток защиты регулируется с помощью подстроечного резистора:

Номиналы резисторов шунта изменяются в зависимости от максимальной выходной мощности. Чем она больше, тем меньше нужно сопротивление. Например, для мощности до 150 Вт нужны резисторы на 0,3 Ом. Если мощность 300 Вт, то лучше использовать резисторы на 0,2 Ом. При 500 Вт и выше ставим резисторы с сопротивлением 0,1 Ом. Данный блок не стоит собирать мощностью выше 600 Вт.

Также нужно сказать пару слов про работу защиты. Она тут икающая. Частота запусков составляет 50 Гц. Это происходит потому, что питание взято от переменки, следовательно, сброс защелки происходит с частотой сети.

Если вам нужен защелкивающийся вариант, то в таком случае питание микросхемы IR2153 нужно брать постоянное, а точнее — от высоковольтных конденсаторов. Выходное напряжение данной схемы будет сниматься с двухполупериодного выпрямителя.

Основным диодом будет диод Шоттки в корпусе ТО-247, ток выбираете под ваш трансформатор.

Если нет желания брать большой корпус, то в программе Layout его легко поменять на ТО-220. По выходу стоит конденсатор на 1000 мкФ, его с головой хватает для любых токов, так как при больших частотах емкость можно ставить меньше чем для 50-ти герцового выпрямителя.

Также необходимо отметить и использование некоторых вспомогательных элементов в обвязке трансформатора:

Кроме того, не забываем об Y-конденсаторе между землями высокой и низкой стороны, который гасит помехи на выходной обмотке блока питания.

Нельзя пропускать и частотозадающую часть схемы.

Это конденсатор на 1 нФ, его номинал автор не советует менять, а вот резистор задающей части он поставил подстроечный, на это были свои причины. Первая из них, это точный подбор нужного резистора, а вторая — это небольшая корректировка выходного напряжения с помощью частоты. А сейчас небольшой пример, допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26В, а вам нужно 24В. Меняя частоту можно найти такое значение, при котором на выходе будут требуемые 24В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и вращая ручку резистора, добиваемся нужного сопротивления.

Это конденсатор на 1 нФ, его номинал менять не советуем, а вот резистор задающей части можно установить подстроечный, на это есть свои причины. Первая из них — это точный подбор нужного резистора, а вторая — это небольшая корректировка выходного напряжения с помощью частоты.

Небольшой пример: допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26 В, а вам нужно 24 В. Меняя частоту, можно найти такое значение, при котором на выходе будут требуемые 24 В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и, вращая ручку резистора, добиваемся нужного сопротивления.

Печатную плату для импульсного блока питания на IR2153 можно скачать ниже:

Импульсный блок питания на IR2153 — сборка своими руками

Сейчас вы можете видеть 2 макетные платы, на которых производились испытания. Они очень похожи, но плата с защитой немного больше.

Макетки сделаны для того, чтобы можно было заказать изготовление данной платы в Китае.

Вот плата уже готова. Выглядит все таким образом. Сейчас быстренько пройдемся по основным элементам ранее не упомянутым. В первую очередь это предохранители. Их тут 2, по высокой и низкой стороне.

Далее видим конденсаторы фильтра.

Их можно достать из старого блока питания компьютера. Дроссель наматываем на кольце т-9052, 10 витков проводом сечением 0,8 мм 2 жилы. Однако можно применить дроссель из того же компьютерного блока питания. Диодный мост — любой, с током не меньше 10 А.

Еще на плате имеются 2 резистора для разрядки емкости, один по высокой стороне, другой — по низкой.

Ну и остается дроссель по низкой стороне, его мотаем 8–10 витков на таком же сердечнике, что и сетевой. Как видим, данная плата рассчитана под тороидальные сердечники, так как они при одинаковых размерах с Ш-образными, имеют большую габаритную мощность.

Тестирование самодельного импульсного блока питания на IR2153

Настало время протестировать устройство. Пока основным советом является производить первое включение через лампочку на 40 Вт.

Если все работает в штатном режиме, то лампу можно откинуть. Проверяем схему на работу. Как видим, выходное напряжение присутствует. Проверим как реагирует защита. Скрестив пальцы и закрыв глаза, коротим выводы вторички.

Как видим, защита сработала, все хорошо. Теперь можно сильнее нагрузить блок. Для этого воспользуемся нашей электронной нагрузкой. Подключим 2 мультиметра, чтоб мониторить ток и напряжение. Начинаем плавно поднимать ток.

Как видим при нагрузке в 2А, напряжение просело незначительно. Если поставить мощнее трансформатор, то просадка уменьшится, но все равно будет, так как этот блок не имеет обратной связи, поэтому его предпочтительнее использовать для менее капризных схем.

  • Смотрите также, как создать 6-вольтный БП на BQ24450

Итак, где использовать универсальный импульсный блок питания на IR2153? В блоках для DC-DC, для усилителей, паяльников, ламп, двигателей.

Видео о создании импульсного блока питания на IR2153 своими руками:

Источник

Читайте также:  Как положить ламинат 33 класса своими руками
Оцените статью