- Digitrode
- цифровая электроника вычислительная техника встраиваемые системы
- Как сделать трансформатор своими руками для импульсного источника питания
- Как самостоятельно собрать трансформатор
- Сердечник трансформатора
- Бобина трансформатора
- Этапы проектирования трансформатора
- Что такое импульсный трансформатор и как его рассчитать?
- Область применения
- Видео: Как работает импульсный трансформатор?
- Требования к приборам
- Принцип работы
- Разновидности
- Преимущества
- Разновидности материалов
- Расчет
- Интересное видео: Импульсный трансформатор своими руками
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Как сделать трансформатор своими руками для импульсного источника питания
Как самостоятельно собрать трансформатор
Разработка эффективной схемы источника питания – довольно сложная задача. Те, кто уже работал с цепями импульсного источника питания, легко согласятся с тем, что конструкция обратноходового трансформатора играет жизненно важную роль в разработке эффективной цепи электропитания. В большинстве случаев эти трансформаторы не доступны в продаже в том же наборе характеристик, который соответствует нашему проекту.
Таким образом, в этом уроке по проектированию трансформаторов мы узнаем, как создать собственный трансформатор в соответствии с требованиями нашей схемы. Обратите внимание, что этот урок охватывает только теорию, на основе которой позже в другом уроке мы построим импульсную схему на 5 В и 2 A с трансформатором ручной работы, как показано на рисунке выше для практической демонстрации.
Конструкция трансформатора импульсного источника питания имеет различные части трансформатора, которые непосредственно отвечают за его работу. Компоненты, представленные в трансформаторе, описаны ниже, мы узнаем важность каждого компонента и то, как он должен быть выбран для вашей конструкции трансформатора. Эти компоненты в большинстве случаев одинаковы и для других типов трансформаторов.
Сердечник трансформатора
Трансформаторы импульсного блока питания сильно зависят от частоты, на которой они работают. Высокая частота переключения открывает возможности выбора более малых трансформаторов. Эти высокочастотные трансформаторы используют ферритовые сердечники.
Конструкция сердечника трансформатора является самой важной вещью в строении трансформатора. Сердечник имеет другой тип AL (коэффициент индуктивности активной зоны), в зависимости от материала сердечника, размера сердечника и типа сердечника. Популярным типом материала сердечника являются N67, N87, N27, N26, PC47, PC95 и т. д. Кроме того, производитель ферритовых сердечников предоставляет подробные параметры в техническом описании, которые будут полезны при выборе сердечника для вашего трансформатора. Например, вот документация для популярного сердечника EE25.
Изображение выше представляет собой данные на сердечник EE25 из материала PC47 от популярного производителя сердечников TDK. Каждый бит информации будет необходим для создания трансформатора. Однако сердечники имеют прямую зависимость от выходной мощности, поэтому для различной мощности источника питания требуются разные форма и размер сердечника.
Далее представлен список сердечников в зависимости от мощности. Список основан на конструкции 0-100 Вт. Источник списка взят из документации Power Integration. Эта таблица будет полезна для выбора правильного сердечника для вашей конструкции трансформатора на основе его номинальной мощности.
Здесь термин TIW обозначает конструкцию с тройной изолированной обмоткой. Е-сердечники являются наиболее популярными и широко используются в трансформаторах импульсных источников. Тем не менее, E-сердечники имеют несколько корпусов, таких как EE, EI, EFD, ER и т. д. Все они выглядят как буква «E», но центральная часть отличается для каждого вещества. Общие типы сердечников E-вида проиллюстрированы ниже с помощью изображений.
Бобина трансформатора
Бобина – это корпус для сердечников и обмоток. Такая бобина или катушка имеет эффективную ширину, которая необходима для расчета диаметров проволоки и конструкции трансформатора. Не только это, бобина трансформатора также имеет пунктирную метку, которая обеспечивает информацию для первичных обмоток. Обычно используемая катушка трансформатора EE16 показана ниже.
Вся обмотка трансформатора будет иметь первичную обмотку и как минимум одну вторичную обмотку, в зависимости от конструкции она может иметь больше вторичной обмотки или вспомогательной обмотки. Первичная обмотка является первой и самой внутренней обмоткой трансформатора. Она напрямую связана с первичной стороной источника питания. Обычно количество обмоток на первичной стороне больше, чем на других обмотках трансформатора. Найти первичную обмотку в трансформаторе легко; нужно просто проверить точечную сторону трансформатора на предмет первичной обмотки. Как правило, она расположена на стороне высокого напряжения силового транзистора.
В схеме импульсных источников питания вы можете заметить, что имеется линия постоянного тока высокого напряжения от высоковольтного конденсатора, соединенного с первичной стороной трансформатора, а другой конец соединен с драйвером питания или с отдельным стоковым выводом MOSFET-транзистора высокого напряжения.
Вторичная обмотка преобразует напряжение и ток на первичной стороне в требуемое значение. Найти вторичный выход немного сложно, так как в некоторых конструкциях трансформатор обычно имеет несколько вторичных выходов. Однако выходная сторона или сторона низкого напряжения цепи импульсного источника питания обычно подключена к вторичной обмотке. Одна сторона вторичной обмотки постоянного тока, GND, а другая сторона подключена через выходной диод.
Существуют различные типы импульсных схем, где для схемы драйвера требуется дополнительный источник напряжения. Вспомогательная обмотка используется для подачи этого дополнительного напряжения в схему управления. Например, если ваша микросхема драйвера работает от 12 В, то у трансформатора будет вспомогательная выходная обмотка, которая может использоваться для питания этой микросхемы.
Трансформаторы не имеют электрического соединения между разными обмотками. Поэтому перед намоткой разных обмоток необходимо обмотать изоляционные ленты вокруг обмоток для разделения. Типичные полиэфирные барьерные ленты используются с различной шириной для разных типов катушек. Толщина лент должна составлять 1-2 мил для обеспечения изоляции.
Этапы проектирования трансформатора
Теперь, когда мы знаем основные элементы трансформатора, мы можем выполнить следующие шаги, чтобы спроектировать наш собственный трансформатор.
Шаг 1: Найдите правильный сердечник для желаемого результата. Выберите правильные сердечники, перечисленные в разделе выше.
Шаг 2: Выяснение количество оборотов для первичных и вторичных обмоток. Первичный и вторичный витки взаимосвязаны и зависят от других параметров. Формула конструкции трансформатора для расчета первичного и вторичного витков следующая:
Np – количество витков первичной обмотки, Ns – количество витков вторичной обмотки, Vmin – минимальное входное напряжение, Vds – напряжение сток-исток силового транзистора, Vo – выходное напряжение, Vd – выходное напряжение диодов прямого падения напряжения, Dmax – максимальная скважность.
Следовательно, первичный и вторичный витки взаимосвязаны и характеризуются коэффициентом витков. Из приведенного выше расчета можно установить соотношение, и, таким образом, путем выбора вторичных витков можно определить первичные витки. Хорошей практикой является использование 1 витка на выходное напряжение вторичной обмотки.
Шаг 3: Следующим этапом является определение первичной индуктивности трансформатора. Это можно рассчитать по приведенной ниже формуле:
P0 – выходная мощность, z – коэффициент потерь, n – КПД, fs – частота переключения, Ip – пиковый первичный ток, KRP – пульсирующее отношение тока к пиковому значению.
Шаг 4: Следующий этап – выяснить эффективную индуктивность для нужного сердечника с зазором.
Lp – первичная индуктивность, Np – количество витков первичной обмотки.
Изображение выше показывает, что такое сердечник с зазором. Создание зазаора – это методика уменьшения значения первичной индуктивности сердечника до желаемого значения. Основные производители предоставляют сердечники с зазором для желаемого показателя эффективной индуктивности. Если такое значение недоступно, можно добавить проставки между сердечниками, чтобы получить желаемое значение.
Шаг 5: Следующий шаг – выяснить диаметр первичного и вторичного проводов. Диаметр провода для первичной обмотки в миллиметрах:
Где BWe — эффективная ширина бобины, а Np – число первичных витков.
Диаметр проводника для вторичной обмотки в миллиметрах составляет:
Ns – число витков вторичной обмотки, а M – запас с обеих сторон. Провода должны быть преобразованы в стандарт AWG или SWG.
Для вторичного проводника более 26 AWG не допускается из-за усиления скин-эффекта. В таком случае могут быть сформированы параллельные провода. При параллельной намотке проводов это означает, что для намотки вторичной стороны требуется более двух проводов, диаметр каждого провода может указывать на фактическое значение одного провода для облегчения намотки на вторичной стороне трансформатора. Вот почему вы можете увидеть некоторые трансформаторы, имеющие два провода на одной катушке.
Источник
Что такое импульсный трансформатор и как его рассчитать?
Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.
Область применения
Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.
Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.
Видео: Как работает импульсный трансформатор?
Требования к приборам
Преобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме.
Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.
Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности.
Принцип работы
Рассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию. Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью. Например, в трансформаторе преобразовывается напряжение 12 в 220 В.
На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы. Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке. Эта особенность является основой принципов функционирования подобного оборудования.
Разновидности
Выделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:
- Тороидальный.
- Броневой.
- Стержневой.
- Бронестержневой.
Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:
В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала.
Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая , технологичная конструкция.
Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу.
Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики.
Преимущества
Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.
Трансформаторы импульсного типа отличаются следующими преимуществами:
- Малый вес.
- Низкая цена.
- Повышенный уровень КПД.
- Расширенный диапазон напряжения.
- Возможность встроить защиту.
Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.
Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.
Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.
Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются.
Разновидности материалов
Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:
- Электротехническая сталь.
- Пермаллой.
- Феррит.
Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.
Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.
Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.
Расчет
Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.
Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:
П = (40-25)/2*11 = 82,5 мм².
Далее можно просчитать минимальное количество витков:
На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:
Д = 78/181 = 0,43 мм.
Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:
ГМ = 300 * 0,6 = 180 Вт.
На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.
Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.
От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.
Интересное видео: Импульсный трансформатор своими руками
Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета.
Источник