Индукционные датчики своими руками

Содержание
  1. Digitrode
  2. цифровая электроника вычислительная техника встраиваемые системы
  3. Индуктивный датчик приближения на основе TCA505 своими руками
  4. УНИВЕРСАЛЬНЫЙ ИНДУКЦИОННЫЙ ДАТЧИК
  5. Схема принципиальная датчика
  6. Изготовление индуктивного датчика
  7. Индуктивный датчик для осциллографа своими руками. Универсальный индукционный датчик. Положительная и отрицательная логика работы
  8. Схемы подключения датчиков PNP и NPN
  9. Индукционные датчики
  10. Замена датчиков
  11. А что там свежего в группе ВК СамЭлектрик.ру ?
  12. Подписывайся, и читай статью дальше:
  13. Как отремонтировать и проверить индуктивный датчик?
  14. Условное обозначение датчика приближения
  15. Варианты исполнения современных индуктивных выключателей
  16. Цветовая маркировка выводов датчиков
  17. Система обозначений индуктивных датчиков
  18. Реальные датчики
  19. Индуктивные датчики уровня воды стиральных машин
  20. Проверка индуктивных датчиков уровня
  21. Достоинства и недостатки
  22. Преимущества выбора индуктивных бесконтактных датчиков положения
  23. Параметры индуктивного датчика
  24. Способ подключения
  25. Цветовая маркировка выводов
  26. Возможность применения индуктивных датчиков положения
  27. Характеристика индуктивных преобразователей
  28. Функции и принцип действия
  29. Типы контроллеров
  30. Фотогалерея «Схемы подключения»
  31. Достоинства и недостатки
  32. Цена вопроса
  33. Так что же это за «хитрость» — индуктивный датчик приближения?
  34. Один из вариантов этой схемы изображён на рис. 1
  35. Принципиальная схема резонансного индуктивного датчика приближения приведена на рис. 2

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Индуктивный датчик приближения на основе TCA505 своими руками

Датчик приближения – это датчик, способный обнаруживать наличие близлежащих объектов без какого-либо физического контакта. Датчик приближения часто излучает электромагнитное поле или пучок электромагнитного излучения и ищет изменения в поле или обратном сигнале.

Опубликованная здесь схема представляет собой индуктивный датчик приближения, который используется для бесконтактного обнаружения металлических объектов. Схема может быть использована для обнаружения металлических предметов или в качестве датчика положения (датчика расстояния).

В данном случае микросхема TCA505 используется для в качестве основы индуктивного бесконтактного переключателя, который может обнаруживать металлические объекты в диапазоне 5-10 мм. Резонансный контур генератора LC реализован с использованием открытого феррита и параллельно подключенного конденсатора (вывод LC). Если металлический объект перемещается ближе к открытой стороне феррита, энергия берется из резонансного контура, и амплитуда колебаний соответственно уменьшается. Это изменение амплитуды передается на пороговое переключение с помощью демодулятора и активирует выходы.

Схема была проверена с напряжением 12 В постоянного тока, однако она также может работать с более высоким напряжением питания, до 42 В с небольшим изменением значений компонентов. Обычно светодиод D2 горит, когда катушка обнаруживает металлический объект. Светодиод D2 гаснет, а светодиод D1 включается, поэтому обычно Out-2 обеспечивает низкую выходную мощность, а Out-1 обеспечивает высокую выходную мощность при обнаружении металлического объекта. Выходной сигнал Q3 переходит в логическую «1», а Q1 в логический «0», оба выхода с открытым коллектором. Потенциометр PR1 помогает отрегулировать расстояние чувствительности датчика. Выход каждого транзистора может напрямую управлять малым реле, так как каждый выход обеспечивает 50 мА тока. Сенсорная катушка может быть изготовлена с использованием металлического сердечника 14 мм, индуктивность должна быть от 540 мкГн до 640 мкГн. Схема подключения выглядит следующим образом.

Расположение компонентов на плате следующее:

Источник

УНИВЕРСАЛЬНЫЙ ИНДУКЦИОННЫЙ ДАТЧИК

Приветствую уважаемых радиолюбителей. Предлагаемый вашему рассмотрению индукционный датчик может использоваться во многих устройствах – сигнализациях отрывания дверей или снятия с полок товаров, в тахометрах, в искробезопасных указателях уровня жидкостей, вместо прерывателей в бензиновых двигателях, в элементах автоматики, к примеру в отключении клапана набора воды в ёмкостях. Схема взята из классических её прототипов, но упрощена и сбалансирована. Она достаточно проста, но, при этом и надёжна, и отличается чёткостью своей работы, легко изготавливается, налаживается и встраивается в различные устройства.

Схема принципиальная датчика

Для более чёткого рассмотрения картинки — сохраните её на ПК и увеличьте.

Схема построена как генератор с индуктивной обратной связью. Колебательный контур на элементах: L2, C2 задаёт частоту, катушка L1 и ёмкость C1 обратной связи обеспечивают генерацию, резисторы: R2, R4 задают режим транзистора по постоянному току и стабилизируют его. Развязку по высокой частоте обеспечивает цепочка: R1, C3.

Важно! Ёмкость С3 должна быть импульсной, хорошего качества и номиналом как указано в схеме.

Формирователь выходного сигнала выполнен по схеме удвоения напряжения на элементах: C4, C5, VD1, VD2, R3 диоды любые высокочастотные, резистор R3 подбирается в зависимости от необходимой скорости убывания выходного напряжения при срыве генерации. При наличии металлического лепестка между катушками генерация срывается.

Печатная плата изготавливается из фольгированного стеклотекстолита, для её крепления используется 2 мм. отверстие, в которое вставляется болт с надетой на него ограничивающей бобышкой (или просто кусок хлорвиниловой трубки от капельницы) и зажимается всё гаечкой, либо болт вкручивается в нарезанную на каком-то основании резьбу.

Изготовление индуктивного датчика

Файл и чертёж проекта можно скачать по ссылке. Катушки L1 и L2 без сердечников. L2 содержит 30 витков провода ПЭВ-1 (0.1-0.12 мм). L1 20-30 витков провода ПЭВ-1 (0.1-0.12 мм.) в зависимости от щели-расстояния в датчике (подбирается опытным путём, но при щели около 2 мм. 23-26 витков). Мотаются катушки на оправке (маленькое 1-1.5 мм. сверло, или иголка, кусок проволоки) между двумя картонными щёчками, после закрепляются клеем и снимаются с оправки, щёчки отбрасываются тоже. Толщина катушек два — три диаметра провода, мотаются в навал. Обе готовые катушки надеваются на пластиковый стержень, который после можно вынуть, между катушек ставится полиэтиленовая или фторопластовая прокладка подходящей толщины (полиэтилен и фторопласт отстаёт от застывшей эпоксидной смолы).

Из прессшпана вырезается крестовидная развёртка коробочки, в её дне прокалывается четыре отверстия, в которые продевают гибкие многожильные провода для выводов катушек, к ним подпаивают концы катушек, развёртку сгибают для получения коробочки, обматывают скотчем или изолентой, продевают насквозь ещё один пластиковый штырь (пластик после извлекается и получается отверстие для крепления), центрируется и крепится также штырь с катушками и, наконец, заливают эпоксидкой. Гибкими выводами катушки подпаиваются каждая на своё место, фазируются для получения генерации, датчик крепится на своё место, рядом с ним плата генератора.

В нынешнее время такие катушки или подобные им можно найти во многих уже не нужных, сломанных или устаревших устройствах, к примеру в флоппи-приводах. Есть и готовые и катушки и датчики, но не всегда их можно приобрести, и не всегда это дёшево. Ну и сделать своими руками тоже для кого-то удовольствие, особенно если будет работать не хуже, а где-то и лучше готовых изделий.

Фотографий готового устройства нет, так как мопед продал, а прибор был в нём. Так же как и плата самого зажигания, к которому и подсоединён этот датчик. Теперь возможно только побробнейшее описание и ответы на вопросы интересующихся на форуме. Но зажигание вместе с этим датчиком действительно было на порядок лучше промышленного. Искрами в лабораторном испытании даже киповскую бумагу поджигало. Ребята шутили — зачем тебе теперь бензин? На макулатуре будешь ездить. В общем схема отличная, рекомендую! Автор статьи — ПНП.

Источник

Индуктивный датчик для осциллографа своими руками. Универсальный индукционный датчик. Положительная и отрицательная логика работы

Здесь же я отдельно вынес такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании – повсеместно. Кроме того, приведены реальные инструкции к датчикам и ссылки на примеры.

Принцип активации (работы) датчиков при этом может быть любым – индуктивные (приближения), оптические (фотоэлектрические), и т.д.

В первой части были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным и с подключением к контроллеру не всё так просто.

Схемы подключения датчиков PNP и NPN

Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.

Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.

Датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)

Датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.

Призываю всех не путаться, работа этих схем будет подробно расписана далее.

На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.

Схемы подключения NPN и PNP выходов датчиков

На левом рисунке – датчик с выходным транзистором NPN

. Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.

Справа – случай с транзистором PNP

на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

Индукционные датчики

Среди многообразия бесконтактных датчиков, по неприхотливости к внешним условиям, простоте изготовления и долговечности наиболее привлекательны индукционные (или генераторные) датчики. На их основе были созданы различные приборы — от самых простых, регистрирующих линейные перемещения, до сложных, таких как системы зажигания с цифровым управлением, системы впрыска топлива, антиблокировочные системы управления тормозами и т.п. Остановимся на процессе, проходящем в генераторном датчике. В простейшем случае датчик состоит из катушки с обмоткой, сердечника из магнитомягкого железа и магнита. Эти три компонента составляют статор датчика. Со статором взаимодействует ротор в виде зубчатого диска или зубчатой рейки с количеством зубцов, определяемым условиями применения датчика (рис.1).

При вращении ротора, в обмотке статора возникает переменное напряжение.Когда один из зубцов ротора приближается к обмотке, напряжение в ней быстро возрастает и, при совпадении со средней линией обмотки, достигает максимума, затем, при удалении зуба, быстро меняет знак и увеличивается в противоположном направлении до максимума. На приводимом графике (рис.2) отчетливо видна большая крутизна изменения напряжения, поэтому переход между двумя максимумами может быть использован для управления электронными системами.

Величина напряжения, вырабатываемого датчиком, зависит от частоты вращения ротора, числа витков катушки и величины магнитного потока, создаваемого постоянным магнитом. Поскольку две последние величины постоянны, величина индуцируемого напряжения достигает максимума при максимальной частоте вращения. При конструировании следует уделять особое внимание усилению импульсов при малой частоте следования. Сфера применения подобных датчиков обширна, остановимся на некоторых примерах.

(рис.3). На спиральной пружинке из тонкой проволоки укреплен небольшой кусочек магнитомягкого железа, при качании или толчке он взаимодействует со статором датчика, который вырабатывает серию апериодических импульсов.

. В датчике частоты вращения коленчатого вала двигателя (рис.4) статор датчика укреплен на кожухе маховика или на заглушке смотрового лючка — в непосредственной близости от зубчатого венца маховика. Прибор обеспечивает наиболее точное определение частоты вращения без вторжения в цепи системы зажигания.

. Для измерения скорости движения автомобиля зубчатый ротор укрепляется на выходном валу коробки передач или на блоке коробки передач вместо гибкого вала. Система позволяет отказаться от дорогого таходатчика или механически малонадежного гибкого вала (рис.5).

. Измерение пути автомобиля производится с помощью зубчатого диска, укрепленного на неприводном колесе (рис.6). Подобные датчики нашли также применении в автоматической системе торможения (ABS — AntiBlockSistem), предотвращающей блокирование колес автомобиля и его занос от «юза».

. Генераторный датчик (рис.1) является основой системы зажигания . В системе зажигания с цифровым управлением «Импульс-Техник» д-ра Хартига используется зубчатый венец маховика двигателя с дополнительным зубом для получения эталонного сигнала (рис.7). Данная система позволяет весьма точно регулировать момент зажигания. Если вернуться к конструкции индукционного датчика, то следует заметить, что если на скорость вращения ротора влияют параметры измеряемой среды, то возникает вопрос о тормозящем моменте, оказываемом магнитным полем постоянного магнита. В этом случае принимаются меры по увеличению момента трогания (увеличивают площадь крыльчатки). Если по условиям эксплуатации не требуется контролировать небольшую частоту вращения, сердечник можно выполнить из магнитотвердого материала без дополнительного магнита, и за счет остаточного магнетизма получить достаточную величину сигнала. В качестве примера можно привести параметры датчиков, нашедших применение в различных приборах.

Например, сердечник датчика выполняется из стали (Ст1, Ст2, Ст3) 03…8 мм (рис.1). На сердечник напрессовываются щеки катушки 012…20 мм на расстоянии 10…15 мм друг от друга. Сердечник под обмоткой изолирован фторопластовой пленкой. Обмотка катушки выполняется внавал, до заполнения пространства между щеками. Провод — ПЭВ-1 00,06…0,1 мм. Количество витков получается примерно 2500…4000.

Длина сердечника колеблется от 12 до 35 мм. С одной стороны сердечника предусмотрена площадка для прикрепления анизотропного магнита. Удобными оказались магниты от герконовых клавиатур. Свободный конец сердечника выводится из корпуса. Корпус датчика выполняется из немагнитного материала. Если требуют условия применения, датчик заливают компаундом.

Ротор, если его необходимо специально изготавливать, выполняют из магнитомягкого материала. Количество зубцов определяется из условий эксплуатации. Зазор между статором и ротором должен быть минимально возможным. Сигнал с датчика поступает на вход простой электронной схемы (рис.8), усиливающей и формирующей сигнал для дальнейшего применения в аналоговой или цифровой форме. Следует упомянуть еще одну особенность подобных датчиков. Они могут считывать сигнал не только от специального ротора, это могут быть зубья шестерни или даже крепежные болты на вращающейся детали.

1. Бун Б. Электроника на автомобиле. — М.: Транспорт, 1979. 2. Цифровые и аналоговые микросхемы. Справочник. — М.: РиС, 1989. 3. 750 электронных практических схем. Сборник, 1987.

И.СЕМЕНОВ г.Дубна РЛ №3, 2000

Замена датчиков

Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.

Это реализуется такими способами:

  • Переделка устройства инициации – механически меняется конструкция.
  • Изменение имеющейся схемы включения датчика.
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы – изменение активного уровня данного входа, изменение алгоритма программы.

Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:

PNP-NPN схемы взаимозаменяемости. Слева – исходная схема, справа – переделанная.

Понять работу этих схем поможет осознание того факта, что транзистор – это ключевой элемент, который можно представить обычными контактами реле (примеры – ниже, в обозначениях).

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Итак, схема слева. Предположим, что тип датчика – НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные “контакты” разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.

Читайте также:  Жидкое моющие средство своими руками

Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.

Если внутренней нагрузки в датчике нет, и коллектор “висит в воздухе”, то это называют “схема с открытым коллектором”. Эта схема работает ТОЛЬКО с подключенной нагрузкой.

Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать “прям щас”.

Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 – 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен – на входе контроллера дискретный “0”, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов – тахометр, или количество заготовок.

Да, не совсем то, что мы хотели, и схемы взаимозаменяемости npn и pnp датчиков не всегда приемлемы.

Как добиться полного функционала? Способ 1 – механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 – перепрограммировать вход контроллера чтобы дискретный “0” был активным состоянием контроллера, а “1” – пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.

Как отремонтировать и проверить индуктивный датчик?

Ремонту датчики приближения практически не подлежат, поскольку имеют цельный корпус, залитый компаундом. К тому же, большинство поломок связано с механическими повреждениями из-за неаккуратного персонала или сдвига активатора.

Чтобы проверить датчик электрически, нужно подать на него питание, то есть подключить его в схему, а затем активировать (инициировать). При активации должен загораться индикатор. Но индикация не гарантирует правильной работы индуктивного датчика. Нужно подключить нагрузку и измерить напряжение на ней, чтобы быть уверенным на 100%.

Условное обозначение датчика приближения

На принципиальных схемах индуктивные датчики (датчики приближения) обозначают по разному. Но главное – присутствует квадрат, повёрнутый на 45° и две вертикальные линии в нём. Как на схемах, изображённых ниже.

НО НЗ датчики. Принципиальные схемы.

На верхней схеме – нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема – нормально закрытый, и третья схема – оба контакта в одном корпусе.

Варианты исполнения современных индуктивных выключателей

Современные производители предлагают большое количество разнообразных вариантов индуктивных датчиков положения и приближения. Основные отличия:

  • конструкция и размеры корпуса: прямоугольные или цилиндрические датчики, также выпускаются специфические конструкции для специализированного применения;
  • диаметр чувствительного элемента;
  • расстояние срабатывания датчика;
  • вариант монтажа датчика: встраиваемый (заподлицо) или невстраиваемый (незаподлицо);
  • совместимое напряжение питания;
  • выход управления;
  • способ подключения.

Цветовая маркировка выводов датчиков

Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются её.

Однако, нелишне перед монтажом убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.

Вот эта маркировка.

  • Синий (Blue) – Минус питания
  • Коричневый (Brown) – Плюс
  • Чёрный (Black) – Выход
  • Белый (White) – второй выход, или вход управления,
    надо смотреть инструкцию.

Система обозначений индуктивных датчиков

Тип датчика обозначается цифро-буквенным кодом, в котором зашифрованы основные параметры датчика. Ниже приведена система маркировки популярных датчиков Autonics. / Каталог датчиков приближения Omron, pdf, 1.14 MB, скачан:1247 раз./

/ Чем можно заменить датчики ТЕКО, pdf, 179.92 kB, скачан:1004 раз./

/ Датчики фирмы Turck, pdf, 4.13 MB, скачан:1336 раз./

/ Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан:2163 раз./

Реальные датчики

Датчики купить проблематично, товар специфический, и в магазинах электрики такие не продают. Как вариант, их можно купить в Китае, на АлиЭкспрессе.

А вот какие я встречаю в своей работе.

Всем спасибо за внимание, жду вопросов по подключению датчиков в комментариях!

Переменные и пульсирующие электромагнитные поля создаются трансформаторами, дросселями, электродвигателями, реле переменного тока и т.д. Для их обнаружения, индикации и усреднённой оценки применяются различные приборы, втом числе содержащие индуктивные датчики.

Принцип работы датчиков электромагнитного поля заключается в регистрации электродвижущей силы (ЭДС), возникающей в катушке индуктивности при приближении к ней магнита или внесении её в магнитное поле. Физические явления здесь строго подчиняются закону электромагнитной индукции Фарадея.

Области применения индуктивных датчиков электромагнитного поля — искатели скрытой проводки, индикаторы короткозамкнутых витков, измерители магнитных полей вокруг трансформаторов и дисплеев, научные эксперименты (Рис. 3.63, а…м).

Рис. 3.63. Схемы подключения индуктивных датчиков электромагнитного поля к МК <начало):

а) /4/ — это датчик низкочастотного магнитного поля промышленной сети 50 Гц. Состоит он из катушки головного телефона, но без амбушюры и металлической мембраны;

б) /4/ — это датчик магнитного поля ультразвуковой частоты для исследования работы строчных трансформаторов телевизоров (15.625 кГц) или VGA-мониторов (31.25 кГц). Катушка датчика содержит 50 витков провода ПЭВ-0.23…0.31, намотанных на ферритовом стержне 200 х 10 мм. Конденсатор С/ подбирается до получения резонанса с индуктивностью катушки /4 7;

в)/4/ — это датчик магнитной составляюшей радиочастотного поля, возникаюшего, например, вблизи радиопередатчиков. Используется ферритовая антенна от обычного ДВ-, СВ- или КВ-радиоприёмника в зависимости от поставленной задачи;

г) в индуктивных датчиках могут возникать всплески напряжения, поэтому требуется защита входа МК, в частности, буферными элементами VD1, VT1\

д) индуктивный датчик перемещения. По мере введения металлического стержня в катушку трансформатора TI будет увеличиваться переменный сигнал 50 Гц во вторичной обмотке;

Схемы подключения индуктивных датчиков электромагнитного поля к МК

е) регистратор электромагнитных излучений от компьютерных дисплеев/кинескопов (I, = 10 мГн), флуоресцентных ламп (L, = 35 мГн), микроволновых печей (L, = 120 мГн). Катушка L/содержит 1200 витков провода ПЭВ-0.315, намотанных на металлическом болте 6×25 мм;

ж) МК подсчитывает число приближений внешнего магнита к катушке индуктивности датчика >4/(показано пунктиром). Резисторы /?желательно применить высокоточные;

з) подключение двухкатушечного гитарного звукоснимателя ЛI через усилитель-компрессор на специализированной микросхеме DAI фирмы Analog Devices. Схема универсальная и может применяться для компадирования сигналов не только в электрогитарах;

и) сигналы от датчика L1 проходят через активный ФНЧ DAL2 с частотой среза 3…4 кГц. Усиление задаётся резистором R5. Элемент Ж/. / формирует среднее напряжение +2.5 В;

Рис. 3.63. Схемы подключения индуктивных датчиков электромагнитного поля к МК

м) «сенсорная» катущка L1 принимает импульсы, возникающие при образовании искры в свечах двигателя автомобиля. Для симметрии схемы выбирают равными R1 и R2, R4w R6.

Что такое емкостные датчики? Это самое обычное электронное реле, срабатывающее при изменении емкости. Чувствительным элементом многих рассмотренных здесь схем являются генераторы высокой частоты от сотен килогерц или больше. Если параллельно контуру этого генератора подсоединить дополнительную емкость, то либо поменяется частота генератора, либо его колебания прекращаются совсем. В любом варианте сработает пороговое устройство, которое включает звуковой или световой сигнализатор. Эти схемы можно применять в различных моделях, которые при встрече с различными препятствиями будут изменять свое движение, в быту — сел в компьютерное кресло включился ноутбук или заиграл музыкальный центр, устройства можно также использовать для включения света в помещениях для построения систем сигнализации и т.п.

Схема работает на звуковых частотах. Для увеличения чувствительности в контур генератора низкой частоты добавлен полевой транзистор.

Генератор прямоугольных импульсов с частотой следования последних 1 кГц

выполнен на элементах
DD1.1
и
DD1.2
. В качестве выходного каскада предназначен
DD1.3
, нагрузкой которого является телефонный динамик.

С целью увеличения чувствительности схемы можно добавить количество радиокомпонентов, введенных в RC — цепь

Схема должна начать работать сразу после включения. Иногда нужно подстроить сопротивление R1

на пороговую чувствительность.

При регулировке реле возможны два варианта его функционирования: срыв или возникновение генерации при появлении емкости. Установка нужного нам схемотехнического варианта выбирается подбором номинала переменного сопротивления R1. При приближении руки к Е1

подстройкой сопротивления R1 делают так, чтобы расстояние, с которого запускалась схема, составляло
10 — 20
сантиметров.

Для включения различных исполнительных механизмов в емкостном реле используем сигнал с выхода элемента DD1.3

Для включения света проходят рядом со вторым емкостным преобразователем, а для отключения освещения в помещении с первым.

Срабатывание преобразователя приводит к переключению RS триггера построенного на логических элементах. Емкостные датчики сделаны из отрезков коаксиального кабеля, с конца которых на длину около 50 сантиметров снят экран. Край экрана требуется изолировать. Датчики устанавливают на дверном каркасе. Длину неэкранированной части датчиков и номиналы сопротивлений R5 и R6 подбирают при отладки схемы так, чтобы триггер надежно срабатывал при прохождении биологического объекта на расстоянии 10 сантиметров от датчика.

Пока емкость между датчиком и корпусом мала, на сопротивлении R2, и на входе элемента DD1.3 формируются короткие импульсы положительной полярности, а на выходе элемента такие же импульсы но уже инвертированные. Емкость С5 медленно заряжается через сопротивление R3, когда на выходе элемента имеется уровень логической единицы, и быстро разряжается через диод VD1 при логическом нуле. Т.к разрядный ток выше зарядного, напряжение на емкости С5 имеет уровень логического нуля, и элемент DD1.4 заперт для сигнала звуковой частоты.

При приближении к элементу любого биологического объекта его емкость относительно общего провода возрастает, амплитуда импульсов на сопротивлении R2 падает ниже порога включения DD1.3. На его выходе будет постоянная логическая единица, до этого уровня осуществится наполнение емкостью конденсатор С5. Элемент DD1.4 начнет пропускать сигнал звуковой частоты, и в динамике раздастся звуковой сигнал. Чувствительность емкостного реле можно регулировать подстроечной емкостью С3.

Датчик изготавливается своими руками с использованием металлической сетки с размерами 20 х 20 сантиметров, для хорошего уровня чувствительности реле.

В этой схеме емкостного реле к логическому элементу DD1.4 подсоединен транзистор VT1, в коллекторную цепь которого включен тиристор VS1 управляющий мощной нагрузкой.

Устройство, собранное по схеме ниже, реагирует на присутствие любого проводящего объекта, в том числе и человека. Чувствительность датчика можно регулировать потенциометром. Схема не позволяет обнаруживать движение объектов, но она хороша именно в роли датчика присутствия. Одним из очевидным решением использования в быту емкостного датчика присутствия является самодельная схема автоматическое открывания дверей. Для этих целей схема устройства должна быть размещена с передней части двери.

Основой этого емкостного устройства являются осциллятор с T1 и одновибратор. Осциллятор это типовой генератор Клаппа стабильной частоты. Поверхность емкостного датчика действует как конденсатор для колебательного контура, и в этой конфигурации частота будет около 1 МГц.

Время переключения схемы можно изменять в широком диапазоне с помощью переменного резистора Р2. Не надо подносить металлические предметы близко к датчику, т.к емкостное реле останется в закрытом состоянии. Эта схема также может быть применена в роли детектора агрессивных жидкостей. Главное достинство здесь заключается в том, что поверхность емкостного датчика не вступает в прямой контакт с жидкостью.

На полевом транзисторе выполнен маломощный генератор с частотой следования импульсов 465 кГц, а на биполярном транзисторе электронный ключ для срабатывания реле К1, контактами которого включается исполнительный механизм. Диод используется в схеме при случайном изменении полярности подсоединяемого источника питания.

Радиус действия емкостного реле и чувствительность, зависит от регулировки С1 и конструкции датчика, если вас заинтересовала это разработка то вы можете скачать журнал моделист конструктор по ссылке чуть выше.

Основа схемы маломощный генератор ВЧ. К колебательному контуру L1C4

подсоединена металлическая пластина. Поднесенная к ней ладонь руки или другая часть тела человека представляет собой вторую обкладку конденсатора
C д
. тем выше, чем больше площадь его обкладок и меньше расстояние между ними.
L1
намотайте на каркасе

8-9 мм, склеенном из бумаги. Катушка СОСТОИТ ИЗ 22-25 витков провода ПЭВ-1 0,3-0,4, намотанных виток к витку. Отвод необходимо сделать от 5-7-го витка, считая от начала.
Настройка реле
Подсоедините в коллекторную цепь биполяярного транзистора V1

миллиамперметр на 10 мА и между точкой соединений миллиамперметра с катушкой
L1
и эмиттером второго транзистора подсоединить конденсатор 0,01-0,5 мкФ. Металлическую пластину временно отключите от генератора. Следя за показаниями миллиамперметра, кратковременно замыкаем
L1C4
. Коллекторный ток
V1
дрезко падает: с 2,5-3 до 0,5-0,8 мА. Максимальные показания соответствуют генерации, наименьшие — ее отсутствию. Если генератор возбуждается, присоедините к нему пластину и медленно поднесите ладонь. Коллекторный ток должен снизиться до уровня 0,5-0,8 мА.

Слабые изменения тока усиливается с помощью двухкаскадного УНЧ на V2

,
V3
. А для того чтобы можно было управлять нагрузкой бесконтактным методом, конечная ступень схемы построена на тринисторе
V5
.

Движок переменного сопротивления R4

устанавливают в крайнее нижнее положение. И затем его медленно двигают вверх до тех пор, пока не включится индикатор
H1
. Теперь подносим ладонь к пластине и проверяем работу устройства.

в цепи тринистора
V5
исключает появление импульса обратного напряжения. А
V6
и сопротивление
R7
защищают тринистор от пробоя. Для тринистора с
U о6р
. = 400 В элементы
V6
и
R7
можно убрать из схемы.

Различного типа датчики сегодня широко применяются в промышленности. Без них ни один технологический процесс не обходится. Существует несколько их видов, нас же в этой статье будет интересовать индуктивный датчик. Поэтому разберемся, для чего он необходим, где применяется, его устройство и принцип работы.

По сути, датчик данного типа – это прибор, принцип работы которого основан на изменениях индуктивности катушки и сердечника. Кстати, отсюда и само название. Изменения индукции происходят из-за того, что в магнитное поле катушки проникает металлический предмет, изменяя его. А соответственно и изменяется схема подключения, в которой основную роль играет компаратор. Он при изменении индукции подает сигнал на реле или конечный транзистор (выключатель), что приводит к отключению подачи электрического тока.

Поэтому основное предназначение данного прибора – это измерять перемещение части оборудования. И при превышении пределов проходимости отключать его. При этом у датчиков есть свои пределы перемещения, которые варьируются в диапазоне от 1 микрона до 20 миллиметров. Кстати, именно поэтому этот прибор называют и индуктивным датчиком положения.

Индуктивные датчики уровня воды стиральных машин

В стиральных машинах используются два типа датчиков — электромеханические и электронные.

Как известно, во всех СМ используются датчики уровня воды (прессостаты). На самом деле они измеряют давление воздуха в трубке, которая подключена к воздушной камере бака СМ, поэтому показания подобных датчиков пропорциональны уровню воды в баке. Такой простой способ измерения уровня воды используется еще и потому, что высокая точность при измерении не требуется. Сигналы с датчиков уровня в дальнейшем используются системой управления СМ при выполнении различных программ (в процессе стирки, отжима), а также для обработки нештатных режимов (перелив воды в баке и др.).

Читайте также:  Интересные идей для дома своими руками

В электромеханическом датчике давление воздуха воздействует на диафрагму датчика, которая, в свою очередь, меняет положение электрического переключателя, что соответствует различным уровням воды в баке.

Что же касается электронных датчиков, они имеют несколько разновидностей. Неизменной во всех типах подобных датчиков остается только диафрагма. Но, в отличие от электромеханических датчиков, она уже воздействует на встроенные в датчик электронные элементы (катушка, конденсатор, потенциометр и др.), вследствие чего на выходе схемы формируются соответственно напряжение, частота (после преобразования в электронной схеме) или меняются параметры пассивных элементов (индуктивность, сопротивление).

В качестве примера датчиков-преобразователей «давление/напряжение» можно привести приборы семейства МРХ5010ххххх компании FREESCALE SEMICONDUCTOR. Они имеют малые габариты, достаточно высокую точность измерения и работают в диапазоне давлений 0…10 кПа. Диапазон напряжений на выходе подобных датчиков составляет 0,2…4,7 В. Внешний вид подобных датчиков показан на рис.1.

Подобные датчики пока широкого распространения не получили, они только начинают применяться в составе новых моделей стиральных машин, например, в модулях «lnvensys АС001» СМ АТЛАНТ 8-й серии.

Наиболее широкое распространение в настоящее время получили индуктивные датчики. Из их названия ясен тип датчика — это преобразователь «давление/индуктивность». Подключение индуктивного датчика уровня и его конструкцию поясняет рис.2, а его внешний вид показан на рис. П1.3.

Конструктивно индуктивный датчик уровня состоит из катушки и подпружиненного магнитного сердечника, который может перемещаться вдоль оси катушки при деформации диафрагмы, воспринимающей изменение давления. Изменение положения сердечника приводит к изменению индуктивности L катушки датчика.

Принципиальная электрическая схема генератора с индуктивным датчиком уровня на примере CM «LG WD-1020W» показана на рис. П1.5. Схема представляет собой простейший генератор с обратной связью. В цепи ОС включены катушка L, конденсаторы С1, С2 (все входят в состав датчика уровня) и резисторы R1, R2, R4(входят в состав электронного модуля).

Принципиальная электрическая схема генератора на основе индуктивного датчика, которая применяется в CM «LG WD-80160», приведена рис.7

На рис.8 приведена упрощенная принципиальная электрическая схема электронного прессостата производства METAFLEX на основе ИМС74НС4060.

В состав микросхемы входят:

— компоненты генератора (логические элементы), к которым подключается катушка индуктивности датчика давления;

— 14-битный двоичный счетчик.

Прессостат выпускается в двух версиях:

— ST-540, применяется в CM ARISTON/INDESIT(заказной код 16002376400);

— ST-545, применяется в CM ELECTROLUX/ZANUSSI (заказной код 3792216040).

Оба датчика незначительно отличаются конструктивно, кроме того, на выходе ST-540 формируется частота в диапазоне 0…10,5 Гц (сигнал снимается с выв. 3 U1 — см. рис.8), а на выходе ST-545 — частота в диапазоне 0…44,5 Гц (выв. 1 U1). В обоих случаях частоты сигналов на выходе датчиков меняются при изменении уровня (давления) водяного столба в диапазоне 0…300 мм.

Проверка индуктивных датчиков уровня

Проверку работоспособности данного типа датчиков можно выполнить следующими способами:

При выполнении сервисного теста СМ В некоторых СМ с дисплеем (LG) при выполнении одного из шагов сервисного теста (на этапе залива воды) на дисплее отображается условный цифровой код, соответствующий уровню воды в баке в данный момент времени. Если значения этого кода выйдут за рамки допустимых, необходима проверка (замена) датчика уровня исвязанных с ним цепей.

Индикация соответствующих кодов ошибок СМ

При отображении на передней панели СМ различных кодов ошибок, связанных с процессами, которые контролирует датчик уровня (залив/слив воды, рассогласованность показаний датчиков уровня) не всегда ошибки указывают на неисправность именно этого датчика. В большинстве случаев приходится проверять работоспособность клапанов залива воды, помпы и их цепей.

Непосредственный контроль частоты генерации на выводах датчика или в соответствующих контрольных точках на электронном модуле СМ

Подобную проверку можно выполнить с помощью частотомера. Уровни воды в баке (или изменение давления воздуха на диафрагму датчика) можно сымитировать различными способами.

В первую очередь проверяют надежность соединения датчика с пластиковой трубкой, а также целостность самой трубки. Также необходимо проверить электрический соединитель датчика.

Измерение индуктивности датчика при разных величинах давления на его диафрагме

Эту проверку можно выполнить, например, с помощью измерителя иммитанса. Уровни воды в баке (или изменение давления воздуха на диафрагму датчика) можно также имитировать различными способами.

Отметим, что при неправильной работе данного типа датчиков в первую очередь необходимо убедиться в том, что причиной ошибки (дефекта) является именно он, а не другие конструктивные или электронные элементы СМ(например, нарушение герметизации пластиковой трубки, отсутствие контакта в соединителях датчика, неисправность электронного модуля).

На индуктивных датчиках имеется регулировочный винт, который залит фиксирующей краской — см. рис.9 (показан стрелкой). Этим винтом регулируется начальное положение диафрагмы датчика, а, следовательно, и положение сердечника катушки, которое определяет значение L0 катушки. Положение винта калибруется в заводских условиях и в дальнейшем регулировки не требует.

При отказе работоспособности датчика регулировать этот винт нежелательно, так как чаще всего нештатное изменение индуктивности его катушки связано с повреждением диафрагмы. В подобных случаях лучше всего заменить сам датчик.

Достоинства и недостатки

Начнем с достоинств:

  • Простота конструкции, достаточно высокая его надежность. Полное отсутствие скользящих контактов, которые быстро выходят из строя.
  • Можно использовать для подключения в электрические сети с промышленной частотой.
  • Высокая чувствительность.
  • Может выдерживать большую выходную мощность.
  • Напряжение и точность работы датчика взаимосвязаны, поэтому нестабильное напряжение в сети становится причиной разброса пределов реагирования.

Преимущества выбора индуктивных бесконтактных датчиков положения

По сравнению с другими устройствами индуктивные датчики имеют ряд отличительных преимуществ:

  • высокая прочность и простота конструкции;
  • простота монтажа и эксплуатации;
  • совместимость с промышленными сетями питания;
  • высокая чувствительность;
  • быстрота срабатывания;
  • долгий срок службы;
  • низкая цена по сравнению с аналогичными приборами.

Благодаря своим преимуществам индуктивные выключатели положения могут широко применяться в промышленности.

Параметры индуктивного датчика

Один из параметров уже описывался выше – это диапазон срабатывания. Хотя, как утверждают специалисты, он не является важным, но именно по нему и делают выбор. Все дело в том, что в паспорте изделия указываются номинальные параметры напряжения при работе прибора в температурном режиме +20С. Постоянное напряжение составляет 24 вольт, переменное – 230 вольт. Как вы понимаете, в таких условиях индукционный датчик обычно не работает, а если и работает, то редко. При этом в качестве объекта, который будет изменять индуктивность катушки прибора, должна выступать стальная пластина, ее ширина должна быть равна трем диапазонам срабатывания и толщиною 1 мм.

На практике же за основу выбора берут два показателя диапазона срабатывания:

Показания первого отличаются от номинального параметра в пределах ±10%. При этом температурный диапазон расширяется от +18С до +28С. Второй определяется, как ±10% от первого при температурном режиме от 25 до 70С. И если при первом параметре используется номинальное напряжение в сети, то при втором присутствует разброс от 85% до 110% от номинала.

Есть еще один параметр, который связан с зоной срабатывания. Это гарантированный предел. Его нижняя часть равна «0», а верхняя 81% от номинального диапазона.

Необходимо учитывать и такие параметры, как гистерезис и повторяемость. Что такое гистерезис в этом случае? По сути, это расстояние между дальними позициями срабатывания датчика. Оптимальное его значение – это 20% от эффективного диапазона срабатывания.

Не последнее значение имеет и материал, из которого изготавливается объект слежения (перемещения). Оптимальный вариант – сталь 37, ее коэффициент редукции равен «1». Все остальные металлы имеют меньший коэффициент. К примеру, нержавейка – 0,85, медь – 0,3. Как понять, на что влияет коэффициент редукции? Для примера возьмем медную пластину. То есть, получается так, что диапазон срабатывания будет равно 0,3, умноженному на полезный диапазон срабатывания. Достаточно низкий показатель.

Перечислим и другие не столь важные параметры6

  • Постоянное напряжение имеет диапазоны: 10-30, 10-60, 5-60 вольт. Переменное 98-253 вольт.

Внимание! Производители сегодня предлагают так называемые универсальные индукционные датчики, которые могут работать и от сети переменного тока, и от сети постоянного.

  • Ток нагрузки (номинальный) – 200 мА. Сегодня производители иногда производят датчики с токовой нагрузкой 500 мА. Это так называемое специсполнение.
  • Частота отклика. Суть этого параметра заключается в том, что он показывает максимальное значение возможности переключаться. Измеряется данный параметр в герцах. Так для основных промышленных датчиков этот показатель равен 1000 Гц.

Способ подключения

Существует несколько разновидностей индуктивных датчиков, которые имеют разное количество проводов подключения.

  • Двухпроводные. Включаются прямо в цепь токовой нагрузки. Самый простой вариант, но очень капризный. Для него нужен номинальное сопротивление нагрузке. Если он снижается или увеличивается, прибор начинает работать некорректно. При подключении к сети постоянного тока, необходимо соблюдать полярность.
  • Трехпроводной. Это самые распространенные индукционные датчики, в которых два провода подключаются к напряжению, один к нагрузке.
  • Четырех-, пятипроводные. В них два провода подключаются к нагрузке. Пятый провод – это возможность выбора режима работы.

Цветовая маркировка выводов

Все, что связано с электрическими сетями, особенно проводниками, обязательно обозначается цветовой маркировкой. Делается это для удобства проведения монтажа и обслуживания. Индуктивный датчик этого также не избежал. В нем выходы обозначены определенными стандартными цветами:

  • Минус – синий цвет.
  • Плюс – красный.
  • Выход – черный.
  • Бывает и второй выход, он белого цвета, который может быть и входом в систему управления. Об этом производитель обязательно информирует в инструкции.

И последнее – это конструктивные особенности, которые касаются корпуса датчика. Он может иметь цилиндрическую или прямоугольную форму. Изготавливается из металлических сплавов или пластика. Чаще всего в промышленности используются цилиндрические приборы диаметром 12 или 18 мм. Хотя есть в этой размерной линейке и другие параметры: 4, 8, 22 и 30 мм.

Для обеспечения нормальной работы двигателя используется множество механизмов и контроллеров, предназначенных для выполнения разных функций. Одним из таких девайсов является индуктивный датчик. Что это за контроллер, каков его принцип работы, какие бывают виды устройств? Об этом мы поговорим ниже.

Возможность применения индуктивных датчиков положения

Бесконтактные индуктивные выключатели предназначены для работы с металлическими объектами. Благодаря этому устройства могут активно применяться в различных видах машин, станков и механизмов для контроля положения отдельных элементов. Датчики идеально подойдут для автоматических процессов управления и автоматизации производства.

Помимо этого, индуктивные датчики могут применяться для работы с отдельными металлическими объектами в различных отраслях промышленности:

  • машиностроение;
  • металлургия;
  • производство станков и оборудования;
  • деревообработка;
  • пищевая промышленность;
  • транспортная отрасль;
  • сельское хозяйство и многие другие.

Ряд производителей предлагает также специальные исполнения, например, для взрывобезопасного применения, повышенного давления и температуры, а также для других нестандартных условий.

Характеристика индуктивных преобразователей

Индуктивный датчик или представляет собой бесконтактное устройство, предназначенное для контроля положения того или иного объекта, выполненного из металла. Это важно, поскольку девайс может проявлять чувствительность только к металлу.

Функции и принцип действия

Принцип действия девайса основан на изменении амплитуды колебаний генераторного устройства, встроенного в контроллер, при внесении в активную зону определенного металлического объекта. Соответственно, применение девайса возможно только с такими типами объектов. При подаче напряжения на конечный выключатель, который находится в зоне чувствительности, появляется магнитное поле. Это поле способствует образованию вихревых токов, влияние которых отражается на изменении амплитуды колебаний генераторного устройства.

В итоге такие преобразования способствуют появлению аналогового выходного импульса, значение которого может быть разным в зависимости от расстояния между контроллером и объектом. Индуктивный датчик перемещения играет очень важную роль для узлов, которые используются для отслеживания изменения места расположения металлических объектов. Благодаря контроллеру определяется, правильно ли расположен тот или иной объект или нет. В том случае, если предмет находится не там, где нужно, система управления должна будет предпринять все необходимые действия для того, чтобы обеспечить нормальную работу устройства.

Что касается устройства контроллера, то девайс состоит из следующих элементов:

  1. Генераторный узел, предназначенный для образования электромагнитного поля, которое, в свою очередь, используется для создания зоны активности с объектом.
  2. Усилительное устройство. Используется для повышения значения амплитуды импульса, чтобы сигнал мог достигнуть нужного параметра.
  3. Триггер Шмитта. Этот элемент предназначен для обеспечения гистертезиса при переключении девайса.
  4. Диодный элемент, который свидетельствует о состоянии контроллера. Также светодиод позволяет обеспечить наиболее оптимальный контроль функционирования девайса и указать на оперативность настройки.
  5. Следующий элемент — компаунд. Его предназначение заключается в обеспечении защиты девайса от попадания влаги внутрь корпуса, а также грязи и пыли, что может привести к его поломке.
  6. Сам корпус. Корпус контроллера предназначен для обеспечения установки девайса, а также его защиты от всевозможных механических повреждений. Как правило, корпус выполняется из латуни либо полиамида, а также он оснащается всеми необходимыми фиксаторами для крепления (автор видео — канал Lty D).

Типы контроллеров

Системы с индуктивным датчиком могут использовать разные устройства, которые отличаются между собой по следующим параметрам:

  1. Конструкция девайса, а также тип корпуса, который может быть прямоугольным либо цилиндрическим. Что касается материала, из которого выполняется сам корпус, то он может быть либо металлическим, либо пластмассовым.
  2. Если речь идет о цилиндрических деталях, то они могут иметь разные размеры корпуса. Как правило, диаметры корпуса составляют 12 и 18 мм, но можно найти и другие девайсы- 4, 8, 22 мм и т.д.
  3. Следующий параметр — рабочий люфт девайса, составляющий расстояние до стальной пластины контроллера. Для небольших по размерам контроллеров этот показатель составляет от 0 до 2 мм, для контроллеров, диаметр которых составляет 12 и 18 мм, рабочий зазор должен быть 4 и 8 мм соответственно.
  4. Число проводов для подключения к бортовой сети. Двухпроводные устройства более удобны в плане установки, однако они чувствительно относятся к нагрузке — при слишком высоком или низком сопротивлении их работа может быть нарушена. Трехпроводные детали на сегодняшний день считаются самыми распространенными, в данном случае два контакта используется для питания, а еще один — для нагрузки. Есть также пяти- и четырехпроводные регуляторы, в которых пятый контакт используется для выбора режима функционирования.
  5. Еще один параметр, по которым устройства могут отличаться, заключается в различии полярности. Релейные датчики позволяют коммутировать нужное значение напряжения или один из контактов питания. В транзисторных датчиках типа PNP на выходе устанавливается специальный транзисторный элемент, позволяющий коммутировать плюсовой выход. Что касается минуса, то в данном случае он подключен постоянно. Также есть транзисторные устройства NPN, в данном случае постоянно запитан плюс, а мину коммутируется транзисторным элементом.
Читайте также:  Блокпост для собаки своими руками

Фотогалерея «Схемы подключения»

Достоинства и недостатки

Индуктивный датчик вращающихся оборотов (к примеру, ДПКВ) или другого типа, как и любое устройство, может иметь свои достоинства и недостатки. Предлагаем с ними ознакомиться.

Начнем с преимуществ:

  1. Во-первых, такие регуляторы характеризуются достаточно простой конструкцией, что позволяет обеспечить высокую надежность их работы. Конструктивно в элементе отсутствуют скользящие контакты, благодаря чему обеспечивается надежная работа датчика, так как контакты не изнашиваются и не выходят из строя.
  2. При необходимости такой регулятор можно своими руками подключить к электрической сети с промышленной частотой.
  3. Повышенная чувствительность регулятора, что позволяет обеспечить его наиболее эффективную и бесперебойную работу.
  4. При необходимости такие приборы могут работать в условиях высоких выходных мощностей.

Что касается недостатков:

  1. Нелинейные значения могут привести к появлению погрешностей, что связано с использованием принципа индуктивного преобразования.
  2. Правильная работа детали возможна при определенной температуре. Если температура не будет соответствовать нормированному диапазону, это может привести к появлению больших погрешностей.
  3. Появлению погрешностей могут способствовать и образование электромагнитного поля вне датчика.

Цена вопроса

Стоимость товара зависит от многих характеристик, в частности, области применения. В среднем цены на индуктивные регуляторы начинаются от 500 рублей и выше.

Так что же это за «хитрость» — индуктивный датчик приближения?

Рассматриваются принцип действия, схемотехника, особенности двух типов индуктивных датчиков приближения — генераторного и резонансного. Даётся краткая характеристика современного европейского рынка индуктивных датчиков приближения.

В 50-е годы ХХ века, в эру дискретных корпусных электронных компонентов, была разработана оригинальная генераторная схема, выполненная всего на четырёх-пяти транзисторах, которая успешно применяется до сих пор и положила начало производству миллионными тиражами малогабаритных индуктивных датчиков, основное назначение которых — создавать логический (бинарный) электрический сигнал, когда металлический предмет (target — мишень) приближается к датчику на малое расстояние (обычно это расстояние составляет от долей миллиметра до ста миллиметров).

Эти индуктивные датчики оказались очень доступным, простым, надёжным, дешёвым элементом систем управления приводов, станков, автоматических линий, систем измерения физических величин. Пожалуй, десятки, если не сотни, фирм по всему миру выросли на производстве этих элементов АСУТП — индуктивных датчиков приближения. Например, в США в 1990 г., по крайней мере, 35 компаний занималось производством подобных датчиков. По оценкам журнала «Control Engineering Europe» глобальный рынок датчиков приближения оценивался в 2002 г. в 2,7 млрд. Евро и его рост составляет 5 % в год (имеется в виду весь рынок датчиков приближения: индуктивных, оптических, ёмкостных, ультразвуковых, магнитных), а европейский рынок датчиков приближения — в 1 млрд. Евро. По мнению этого журнала, главными производителями электронных датчиков приближения являются фирмы: ABB, Balluff, Banner, Baumer Electric, Bernstein, Carlo Gavazzi, Datasensor, ifm electronic, Leuze, Pepperl + Fuchs, Schmersal, Schneider, Sick, Siemens, Turck (приведены в алфавитном порядке).

Хорошо видно, что костяк составляют немецкие фирмы, и это является одним из «кирпичиков» лидерства немецкого машиностроения в мире. Если сузить этот список до тройки самых главных производителей индуктивных датчиков в Германии, то места распределятся так: 1-е место ifm electronic; 2-е место Pepperl + Fuchs; 3-е место Balluff.

Фирмы, специализирующиеся на производстве индуктивных датчиков, выпускают огромный ассортимент, насчитывающий до тысячи и более типоразмеров. Некоторые эксплуатационные и технические параметры индуктивных датчиков приближения указывают на совершенство технологии фирмы-производителя:

  • датчики размещаются в корпусах диаметром 3 мм с полным набором функций (встроенный светодиод, защита выхода от короткого замыкания и неправильного подключения питания, степень защиты корпуса не ниже IP 67);
  • датчики имеют цельнометаллический корпус, т. е. чувствительная поверхность датчика закрыта металлом;
  • высокая степень защиты (герметизации) корпуса, например, IP 68, IP 69K. При защите IP 69K датчик вместе с электрическим разъёмом можно обрабатывать горячими водяными брызгами под давлением (до 100 бар);
  • выпуск датчиков с так называемым корректирующим фактором, равным 1. То есть датчик, практически, на одинаковых расстояниях определяет приближение к нему разных металлов: углеродистой стали, нержавеющей стали, меди, алюминия и др.;
  • выпуск датчиков с аналоговым выходом, когда на выходе датчика создаётся измерительный аналоговый сигнал, пропорциональный расстоянию между датчиком и предметом;
  • выпуск датчиков, выдерживающих высокие давления (200, 300, 500 бар);
  • выпуск датчиков, работающих при очень низких (до −60 °С) или очень высоких (до +180…200 °C) температурах;
  • максимальная частота переключения выходного бинарного (релейного) сигнала 5, 7, 10 кГц.

Надёжность серийных индуктивных датчиков такова, что специальные их исполнения применяются в наиболее ответственных местах, связанных с безопасностью людей: опасные для персонала ТП или, например, в АСУ современными канатными дорогами.

Технология производства датчиков настолько отработана, что фирмы-производители гарантируют сроки эксплуатации до трёх-пяти лет. Например, фирма ifm electronic указывает о пятилетней гарантии в своих каталогах. Сроки службы датчиков могут составлять 20 лет и более. Причём, это уже проверено на практике, поскольку по сей день работают целые производства, закупленные комплектно в Германии в 80-х годах ХХ века и снабжённые такими датчиками.

Схемотехника современных индуктивных датчиков приближения разнообразна и может значительно отличаться от своих «прародителей» середины ХХ века. Например, для автоматизации управления больших технологических комплексов или сложных машин требуется устанавливать десятки и сотни индуктивных и иных датчиков. В этом случае ощутимую выгоду на линиях связи может дать новое поколение двухпроводных датчиков с интерфейсом AS-i (actuator — sensor interface), когда к одной двухпроводной медной шине подключаются до 248 датчиков. При этом, по одной и той же шине проходит электропитание датчиков, исполнительных механизмов и получение информации с датчиков. По существу, один датчик с AS-i интерфейсом — это микроконтроллер со своей системой передачи данных.

Но всё же, оригинальность генераторной схемы -«первоисточника» современных индуктивных датчиков приближения, богатство функциональных возможностей схемы, её простота впечатляют. Рассмотрим эту схему, оценим с чего всё начиналось, откуда «поднялись» несколько российских, а ещё раньше — множество зарубежных фирм.

Один из вариантов этой схемы изображён на рис. 1


Рис. 1 Индуктивный датчик приближения генераторного типа
«Гвоздь» схемы — генератор колебаний на транзисторной сборке VT1 с двухобмоточным индуктивным чувствительным элементом. Параметры двух индуктивных катушек, уложенных на один сердечник, конденсаторы и резисторы рассчитываются и подбираются так, что при подключении питания в генераторе самопроизвольно возникают колебания. Причём, достоинство генератора — в способности к колебаниям в очень широком диапазоне питающих напряжений. Отсюда и получается широкий диапазон допустимых напряжений питания во многих индуктивных датчиках: 10…30 В постоянного тока. Конструктивное исполнение катушек индуктивности может быть самое разнообразное: обмотки, уложенные в броневой сердечник; обмотки, намотанные на сердечник произвольной формы; два стандартных сердечника типа ДМ, соединённые между собой; просто обмотки без сердечников. Сердечники лишь концентрируют, перераспределяют в пространстве около обмоток потоки рассеяния. Большинство изготовителей применяют сердечник-«чашку», чтобы бóльшую часть потоков сконцентрировать в открытой области «чашки». Здесь и будет наблюдаться максимальная чувствительность генератора к приближению металлов. Однако, главное — подобрать параметры колебательного контура так, чтобы обеспечивалось возникновение колебаний при включении питания.

Теперь, если к катушкам близко поднести металлический предмет или любой материал (мишень), в котором могут наводиться вихревые токи, то способность колебательного контура к колебаниям резко падает из-за взаимоиндукции катушек и мишени. Если продолжить сближение катушек с мишенью, колебания практически прекратятся или их амплитуда уменьшится в несколько раз. Таким образом, чувствительность генератора к приближению металлического или магнитного материала очень высока, что также является важным достоинством схемы. На коллекторе 7 транзисторной сборки уже присутствует демодулированный сигнал, который поступает на компаратор — триггер Шмитта на транзисторах VT2, VT3. Поскольку на коллекторе 7 имеется аналоговый сигнал, находящийся в функциональной зависимости от расстояния между катушками и приближающимся предметом, его можно использовать для измерительных целей, т. е. определения этого расстояния. Компаратор создаёт релейный (бинарный) усиленный выходной сигнал. Генераторной схема названа потому, что чувствительным элементом схемы является генератор: есть колебания в генераторе — мишень находится вне чувствительной зоны катушек, колебания нарушились — мишень находится внутри чувствительной зоны. Светодиод VD1 будет светиться и к нагрузке будет прикладываться напряжение питания, когда мишень приближена к чувствительному элементу. Фирмы теперь уже, практически, не выпускают датчиков без встроенных в корпус индикаторных светодиодов. Такой светодиод в выходной цепи удобен при монтаже датчика и контроле его работоспособности. В случае индуктивного характера (например, реле) нагрузку следует шунтировать диодом VD3, чтобы ликвидировать паразитные всплески в выходном сигнале датчика. Диод VD2 выполняет важную функцию защиты всей схемы от неправильной полярности питания. Недостатком такой генераторной схемы индуктивного датчика приближения является разное расстояние переключения датчика для разных материалов мишени — так называемый, коэффициент редукции. Производители приводят его в своих каталогах обычно для материалов из стали, алюминия, латуни.

Авторами статьи в Московском Энергетическом институте (1988 г.) был разработан иной индуктивный датчик приближения, работающий на резонансном принципе, т. е. индуктивный датчик малых перемещений. Резонансный принцип действия для чувствительных элементов фотодатчиков был предложен ещё раньше и хорошо показал себя в измерительном электронном оборудовании для Московской Олимпиады (1980 г.).

Принципиальная схема резонансного индуктивного датчика приближения приведена на рис. 2


Рис. 2 Индуктивный датчик приближения резонансного типа
Чувствительным элементом датчика является катушка с сердечником L1, которая вместе с конденсатором С1 составляет параллельный резонансный контур, запитываемый от R-C генератора несущей частоты.

На рис. 1 чувствительный элемент (две катушки с сердечником) является составной частью генератора несущей частоты. В двух описываемых схемах форма колебаний (синусоидальные, прямоугольные или иные) большого значения не имеет. В резонансной схеме (см. рис. 2) несущие колебания создаются регулируемым RC генератором, состоящим из двух элементов микросхемы 564ЛН2. Несущие колебания через разделительный резистор R2 поступают в резонансный контур L1-C1. Частота резонанса контура должна быть в пределах регулировки генератора резистором R1. На частоте резонанса внутреннее сопротивление параллельного резонансного контура наибольшее. Поэтому, амплитуда на затворе полевого транзистора VT1 максимальная. Реальный L-C контур имеет и боковые резонансы, но амплитуда колебаний напряжения в контуре при боковых резонансах значительно меньше, чем на частоте основного резонанса. Генератор настраивается резистором R1 на частоту колебаний, при которой напряжение на входе компаратора максимальное (в отсутствии мишени вблизи чувствительного элемента). Поскольку внутреннее сопротивление L-C контура значительное, то применяется в качестве усилителя именно полевой транзистор, имеющий большое входное сопротивление. После усилителя сигнал детектируется диодом VD2 и фильтруется фильтром R4-C3. Таким образом, на входе компаратора существует сигнал постоянного напряжения. В отсутствии мишени у чувствительного элемента сигнал напряжения на входе компаратора максимален и составляет 3…4 В. После сближения активного чувствительного элемента и мишени, например, из углеродистой стали, в материале мишени будут наводиться вихревые токи, которые начинают взаимодействовать с чувствительным элементом индуктивного датчика. Вследствие этого, нарушается резонанс, уменьшается амплитуда напряжения на L-C контуре, уменьшается напряжение на выходе фильтра и на входе компаратора. Если продолжается сближение чувствительного элемента и мишени, то уменьшение напряжения на входе компаратора составит 1,5…2 В. Компаратор построен на двух элементах микросхемы 564ЛН2. Пороги переключения компаратора и ширина гистерезиса устанавливаются величинами сопротивлений резисторов R5, R6, R7. Гистерезис компаратора устанавливает гистерезис датчика. При сближении датчика и мишени происходит переключение выхода компаратора из логического нуля в логическую единицу. При удалении мишени происходит обратное переключение компаратора. При указанных номиналах элементов схемы включение датчика происходит на расстоянии около 1,5 мм от поверхности стальной мишени, выключение — на расстоянии около 2,5 мм от той же поверхности. Резистор R9, находящийся в коллекторной цепи выходного транзистора VT2, выполняет функцию защиты от токовых перегрузок выхода, препятствует протеканию чрезмерного выходного тока. В случае индуктивного характера нагрузки датчика (например, реле) диод VD3 будет подавлять броски напряжения в нагрузке. Диод VD1 является защитой при неправильном подключении полярности питания к датчику. В коллекторной цепи выходного транзистора, при необходимости, может быть включён светодиод с резистором для визуального контроля состояния выхода индуктивного датчика.

Таким образом, рассмотренный индуктивный датчик вырабатывает бинарный сигнал высокого уровня при сближении с мишенью и низкого уровня — при удалении от мишени. Кроме того, в измерительных целях может быть использован выходной аналоговый сигнал индуктивного датчика, который снимается с фильтра. Этот сигнал монотонно изменяется при сближении чувствительного элемента и мишени. Установлено, что при расстояниях между датчиком и мишенью до 1 мм выходной аналоговый сигнал изменяется практически линейно. Изменение аналогового сигнала составляет не менее 2 В (от состояния, когда нет стальной мишени, до состояния, когда мишень и датчик соприкасаются). Схема обладает хорошей термостабильностью. Расстояние переключения индуктивного датчика с мишенями из разных материалов практически не изменяется, т. е. коэффициент редукции близок к единице.

В данном схемотехническом решении генератора, несущая частота, а, значит, амплитуда напряжения на L-C контуре, существенно зависят от стабильности напряжения питания. Поэтому, реальный допуск на изменение питающего напряжения не должен быть более ±5 %.

Очевидно, что схемотехника генератора несущей частоты, компаратора и выходного усилителя может быть весьма разнообразной и даже более термостабильной и нечувствительной к изменениям напряжения питания, чем описанные. Однако, резонансный чувствительный контур, простой усилитель на полевом транзисторе, детектор, фильтр, т. е. основа датчика, очень просты, оригинальны, надёжны и не требуют никаких подстроек.

Итак, рассмотрены две принципиальные схемы для построения индуктивных датчиков приближения. Каждая из них имеет свои достоинства. Вероятно, резонансная схема имеет больший потенциал для реализации по гибридной или интегральной технологии.

В заключении следует отметить, что западноевропейские лидеры в этой области постоянно патентуют всё новые и новые индуктивные датчики, ссылки на которые регулярно появляются в отечественных реферативных журналах электротехнической тематики. Новшества касаются как схемотехники, так и конструкции датчиков. В России работают две-три электротехнические компании по производству датчиков, использующих, в основном, первую (генераторную) схему. Их интернет-сайты приводятся в конце статьи. Заинтересованному читателю рекомендуем просмотреть сайт немецкой фирмы ifm electronic, один из удачных в этой области.

Статья впервые опубликована в журнале «Приборы и системы. Управление, контроль, диагностика.» — Москва, 2005.- № 12.- с.36-39.

  • Sensors expo // Sensors. September 1990.
  • Колотов А. Бесконтактный прерыватель электронной системы зажигания // Радио. 1993. № 11.
  • Габов А. П., Рыжов С. Н. Индуктивный конечный датчик в электроприводе // Всесоюзная науч.-техн. конф. «Следящие электроприводы пром. установок, роботов и манипуляторов»: Тез. докл. Челябинск, 1989.

Если у вас возникли какие-либо вопросы по данному материалу, вы можете задать их, написав на электронную почту соавтора статьи

Источник

Оцените статью